Chapter 2
Polynomials

In this chapter, fix a commutative field \((K, +, \times)\) (for instance \(K = \mathbb{Q}, \mathbb{R}\) or \(\mathbb{C}\)). We denote

- 0 the additive identity
- \(-a\) the additive inverse of an element \(a \in K\)
- 1 the multiplicative identity
- \(a^{-1}\) the multiplicative inverse of an element \(a \in K^* = K - \{0\}\)

2.1 The ring \(K[X]\)

2.1.1 Definition and operations

Definition 2.1 (Polynomial)

Let \((a_n)_{n \in \mathbb{N}} = (a_0, a_1, a_2, \ldots, a_n, \ldots)\) be an infinite sequence of elements in \(K\) which are eventually equal to zero, that is

\[\exists d \in \mathbb{N} / \forall n > d, \ a_n = 0\]

The polynomial with coefficients \((a_n)_{n \in \mathbb{N}}\) is the following formal expression

\[P(X) = a_0 + a_1X + a_2X^2 + \cdots + a_dX^d = \sum_{n=0}^{d} a_nX^n = \sum_{n=0}^{+\infty} a_nX^n\]

Moreover

- the formal symbol \(X\) is called the variable
- the formal symbols \(X^0 = 1, X^1 = X, X^2, \ldots, X^n, \ldots\) are called the powers of \(X\)
- for any \(n \in \mathbb{N}\), \(a_n\) is called the coefficient of the term with degree \(n\)
- \(a_0\) is called the constant term

We denote \(K[X]\) the set of all polynomials with coefficients in \(K\).

Examples: \(P(X) = X + X^3 + X^5 = 0 + 1X + 0X^2 + 1X^3 + 0X^4 + 1X^5\) is a polynomial in \(K[X]\) but also \(Q(X) = X^2\) or \(R(X) = 0\). \(S(X) = \frac{1}{2} - \sqrt{2}X^2 + 5X^4\) is a polynomial in \(\mathbb{R}[X]\) or \(\mathbb{C}[X]\) but not in \(\mathbb{Q}[X]\).
Definition 2.2 (Addition in \(\mathbb{K}[X] \))

Let \(P(X) \) and \(Q(X) \) be two polynomials in \(\mathbb{K}[X] \) with coefficients respectively \((a_n)_{n \in \mathbb{N}}\) and \((b_n)_{n \in \mathbb{N}}\). We define the sum of \(P(X) \) and \(Q(X) \), denoted \((P + Q)(X)\), to be the polynomial in \(\mathbb{K}[X] \) with coefficients \((a_n + b_n)_{n \in \mathbb{N}}\). That provides a binary operation \(+\) on \(\mathbb{K}[X] \).

\[
P(X) + Q(X) = (P + Q)(X) = \sum_{n=0}^{+\infty} (a_n + b_n)X^n
\]

Example: For instance, we have in \(\mathbb{R}[X] \):

\[
(1 + 2X + 3X^3) + (4 - X + 5X^4) = (1 + 4) + (2 - 1)X + (0 + 0)X^2 + (3 + 0)X^3 + (0 + 5)X^4 = 5 + X + 3X^3 + 5X^4
\]

Definition 2.3 (Multiplication in \(\mathbb{K}[X] \))

Let \(P(X) \) and \(Q(X) \) be two polynomials in \(\mathbb{K}[X] \) with coefficients respectively \((a_n)_{n \in \mathbb{N}}\) and \((b_n)_{n \in \mathbb{N}}\). We define the product of \(P(X) \) and \(Q(X) \), denoted \((PQ)(X)\), to be the polynomial in \(\mathbb{K}[X] \) with coefficients \((\sum_{k=0}^{n} a_k b_{n-k})_{n \in \mathbb{N}}\). That provides a binary operation \(\times\) on \(\mathbb{K}[X] \).

\[
P(X)Q(X) = (PQ)(X) = \sum_{n=0}^{+\infty} \left(\sum_{k=0}^{n} a_k b_{n-k} \right) X^n = \sum_{n=0}^{+\infty} \left(\sum_{k, \ell \in \mathbb{N}} a_k b_{\ell} \chi_{k \ell = n} \right) X^n
\]

Remark: The previous definition is natural with respect to the following property

\[
\forall (k, \ell) \in \mathbb{N}^2, \quad X^k X^\ell = X^{k+\ell}
\]

Example: For instance, we have in \(\mathbb{R}[X] \):

\[
(3 - X - 2X^2)(2 + 6X + 4X^2) = 6 + (18 - 2)X + (12 - 6 - 4)X^2 + (-4 - 12)X^3 - 8X^4
\]

\[
= 6 + 16X + 2X^2 - 16X^3 - 8X^4
\]

Proposition 2.4

\((\mathbb{K}[X], +, \times)\) is a commutative unital ring whose identity elements are respectively the constant polynomials \(0\) for addition and \(1\) for multiplication.

Proof: At first, \(\mathbb{K}[X] \) is nonempty (for instance the constant polynomial \(0\) is in \(\mathbb{K}[X] \)).

1. \(+\) and \(\times\) are binary operations on \(\mathbb{K}[X] \) by definition.

2. We have:
 (a) \(+\) is associative on \(\mathbb{K} \), so the same does on \(\mathbb{K}[X] \) as well.
 (b) The constant polynomial \(0 \in \mathbb{K}[X] \) is the additive identity for \(+\) in \(\mathbb{K}[X] \).
 (c) For any polynomial in \(\mathbb{K}[X] \) with coefficients \((a_n)_{n \in \mathbb{N}}\), the polynomial in \(\mathbb{K}[X] \) with coefficients \((-a_n)_{n \in \mathbb{N}}\) is its additive inverse.
 (d) \(+\) is commutative on \(\mathbb{K} \), so the same does on \(\mathbb{K}[X] \) as well.

Consequently \((\mathbb{K}[X], +)\) is an abelian group.
3. Let \(P(X), Q(X) \) and \(R(X) \) be three polynomials in \(\mathbb{K}[X] \) with coefficients respectively \((a_n)_{n \in \mathbb{N}}, (b_n)_{n \in \mathbb{N}} \) and \((c_n)_{n \in \mathbb{N}}\). We have:

\[
[P(X)Q(X)]R(X) = \left[\sum_{n=0}^{+\infty} \left(\sum_{k,\ell \in \mathbb{N}} a_k b_{\ell} \right) X^n \right] \left[\sum_{j=0}^{+\infty} c_j X^j \right] = \sum_{n=0}^{+\infty} \left(\sum_{k,\ell \in \mathbb{N}} a_k b_{\ell} c_j \right) X^n = P(X) [Q(X)R(X)]
\]

Thus, \(\times \) is associative on \(\mathbb{K}[X] \).

4. Let \(P(X), Q(X) \) and \(R(X) \) be three polynomials in \(\mathbb{K}[X] \) with coefficients respectively \((a_n)_{n \in \mathbb{N}}, (b_n)_{n \in \mathbb{N}} \) and \((c_n)_{n \in \mathbb{N}}\). We have:

\[
\sum_{n=0}^{+\infty} \left(\sum_{k,\ell \in \mathbb{N}} a_k (b_{\ell} + c_{\ell}) \right) X^n = \sum_{n=0}^{+\infty} \left(\sum_{k,\ell \in \mathbb{N}} a_k b_{\ell} \right) X^n + \sum_{n=0}^{+\infty} \left(\sum_{k,\ell \in \mathbb{N}} a_k c_{\ell} \right) X^n
\]

Equivalently, \(P(X) (Q(X) + R(X)) = P(X)Q(X) + P(X)R(X) \). And the same goes for \((Q(X) + R(X)) P(X) = Q(X)P(X) + R(X)P(X) \). Thus, \(\times \) is distributive over \(+\) on \(\mathbb{K}[X] \).

5. Let \(P(X) \) be a polynomial in \(\mathbb{K}[X] \) with coefficients \((a_n)_{n \in \mathbb{N}}\). Since every coefficient of the constant polynomial \(1 \in \mathbb{K}[X] \) is equal to zero except the constant term equal to 1, we have:

\[
P(X)1 = \sum_{n=0}^{+\infty} \left(a_0 + a_1 + \cdots + a_{n-1} + a_n \right) X^n = \sum_{n=0}^{+\infty} a_n X^n = P(X)
\]

And the same goes for \(1P(X) = P(X) \). Thus, the constant polynomial \(1 \in \mathbb{K}[X] \) is the multiplicative identity for \(\times \) in \(\mathbb{K}[X] \).

6. \(+\) and \(\times \) are commutative on \(\mathbb{K} \), so the same goes for \(\times \) on \(\mathbb{K}[X] \) as well.

Finally, \(\mathbb{K}[X] \) satisfies all conditions to be a commutative unital ring.

\[\square\]

Remark: But \((\mathbb{K}[X], +, \times) \) is not a field. For instance, the polynomial \(P(X) = X \in \mathbb{K}[X] - \{0\} \) has no multiplicative inverse in \(\mathbb{K}[X] \); there is no polynomial \(Q(X) \in \mathbb{K}[X] \) such that \(XQ(X) = 1 \).

Proof: For any polynomial \(Q(X) = a_0 + a_1 X + a_2 X^2 + \cdots + a_d X^d \in \mathbb{K}[X] \), the constant term of \(XQ(X) = a_0 X + a_1 X^2 + a_2 X^3 + \cdots + a_d X^d \in \mathbb{K}[X] \) is 0 but that one of the constant polynomial \(1 \in \mathbb{K}[X] \) is 1. So the equality can not hold.

Sébastien Godillon
2.1.2 Degree

Definition 2.5 (Degree)

The degree of a polynomial \(P(X) \in \mathbb{K}[X] \), denoted \(\deg(P(X)) \) or shortly \(\deg(P) \), is the highest exponent for terms with non zero coefficient. More precisely if \((a_n)_{n \in \mathbb{N}}\) are the coefficients of \(P(X) \) then \(\deg(P) \) is an element of \(\mathbb{N} \cup \{-\infty\} \) defined by

\[
\deg(P) = \begin{cases}
-\infty & \text{if } P(X) = 0 \\
\max\{n \in \mathbb{N} / a_n \neq 0\} & \text{otherwise}
\end{cases}
\]

Moreover, the coefficient \(a_{\deg(P)} \in \mathbb{K}^* \) (in case \(P(X) \neq 0 \)) is called the leading coefficient.

Some examples:

a) The (non zero) constant polynomials \(P(X) = a_0 \in \mathbb{K}[X] \) where \(a_0 \neq 0 \) are of degree 0.

b) The linear polynomials \(P(X) = a_0 + a_1 X \in \mathbb{K}[X] \) where \(a_1 \neq 0 \) are of degree 1.

c) The quadratic polynomials \(P(X) = a_0 + a_1 X + a_2 X^2 \in \mathbb{K}[X] \) where \(a_2 \neq 0 \) are of degree 2.

d) The cubic polynomials \(P(X) = a_0 + a_1 X + a_2 X^2 + a_3 X^3 \in \mathbb{K}[X] \) where \(a_3 \neq 0 \) are of degree 3.

etc.

Remark: It is useful to define the degree of the zero constant polynomial to be \(-\infty\) (furthermore it is convenient to take \(\max\emptyset = -\infty \) as a convention). In the following, we introduce the rules:

\[
\forall k \in \mathbb{N} \cup \{-\infty\}, \quad \begin{cases}
-\infty \leq k \\
\max\{k, -\infty\} = k \\
k + (-\infty) = (-\infty) + k = -\infty
\end{cases}
\]

Proposition 2.6

Let \(P(X) \) and \(Q(X) \) be two polynomials in \(\mathbb{K}[X] \). Then the following properties hold

1. \(\deg(P + Q) \leq \max\{\deg(P), \deg(Q)\} \) with equality if \(\deg(P) \neq \deg(Q) \)

2. \(\deg(PQ) = \deg(P) + \deg(Q) \)

Proof: We write \(P(X) = \sum_{n=0}^{\deg(P)} a_n X^n \) and \(Q(X) = \sum_{n=0}^{\deg(Q)} b_n X^n \).

1. In case \(\deg(P) < \deg(Q) \) we get

\[
(P + Q)(X) = \sum_{n=0}^{\deg(P)} (a_n + b_n) X^n + \sum_{n=\deg(P)+1}^{\deg(Q)} b_n X^n
\]

And \(b_{\deg(Q)} \neq 0 \) implies that \(\deg(P + Q) = \deg(Q) = \max\{\deg(P), \deg(Q)\} \). The same goes when \(\deg(P) > \deg(Q) \). Now if \(\deg(P) = \deg(Q) = d \) then

\[
(P + Q)(X) = \sum_{n=0}^{d} (a_n + b_n) X^n
\]

Consequently, we have \(\deg(P + Q) \leq d = \max\{\deg(P), \deg(Q)\} \).
2. We have:

\[
(PQ)(X) = \sum_{n=0}^{+\infty} \left(\sum_{k, \ell \in \mathbb{N}} a_k b_{k, \ell} \right) X^n = \sum_{n=0}^{+\infty} \left(\sum_{k \leq \deg(P), \ell \leq \deg(Q)} a_k b_{k, \ell} \right) X^n = \sum_{n=0}^{\deg(P)+\deg(Q)} \left(\sum_{k \leq \deg(P), \ell \leq \deg(Q)} a_k b_{k, \ell} \right) X^n
\]

Moreover the coefficient of the term with degree \(n = \deg(P) + \deg(Q) \) is

\[a_k b_{k, \ell} = a_{\deg(P)} b_{\deg(Q)} \neq 0\]

The conclusion follows.

\[\square\]

Remarks:

- The results remain true if \(P(X) \) or \(Q(X) \) (or both) is the zero constant polynomial.
- In the first property, the sufficient condition for equality is not necessary. For instance

\[\deg(X + X) = \deg(2X) = 1 = \deg(X)\]

Actually if \(P(X) \) and \(Q(X) \) are two polynomials of same degree \(d \in \mathbb{N} \) whose their leading coefficients are respectively \(a_d \) and \(b_d \) then

\[\deg(P + Q) = d \iff a_d \neq -b_d\]

2.1.3 Polynomial arithmetic

Theorem 2.7 (Polynomial division algorithm)

For any given two polynomials \(P(X) \) and \(D(X) \) with \(D(X) \neq 0 \), there exist unique polynomials \(Q(X) \) and \(R(X) \) such that

\[
\begin{cases}
P(X) = Q(X)D(X) + R(X) \\
\deg(R) < \deg(D)
\end{cases}
\]

The polynomial \(Q(X) \) is called the quotient, \(R(X) \) the remainder, \(D(X) \) the divisor and \(P(X) \) the dividend.

Proof: Existence. Fix a polynomial \(D(X) \in \mathbb{K}[X] \) with \(D(X) \neq 0 \) and call \(d \geq 0 \) its degree. Remark that if \(d = 0 \), that is \(D(X) = b_0 \neq 0 \), then \(Q(X) = b_0^{-1}P(X) \) and \(R(X) = 0 \) are suitable. So we may assume that \(d \geq 1 \).

We will prove by induction the following property for every \(k \geq 0 \)

\[\mathcal{P}_k = \text{"the existence part is true for every } P(X) \in \mathbb{K}[X] \text{ with } \deg(P) \leq k\"

At first, if \(\deg(P) \leq d - 1 \) then \(Q(X) = 0 \) and \(R(X) = P(X) \) are suitable. Hence, \(\mathcal{P}_k \) is satisfied for every integer \(k \) such that \(0 \leq k \leq d - 1 \) (and at least for \(k = 0 \) since \(d \geq 1 \)).

Now assume \(\mathcal{P}_k \) is satisfied for a given integer \(k \geq d - 1 \). Let \(P(X) \) be a polynomial in \(\mathbb{K}[X] \) of degree \(\deg(P) = k + 1 \geq d \). We write:

\[
P(X) = a_0 + a_1 X + a_2 X^2 + \cdots + a_d X^d + \cdots + a_{k+1} X^{k+1} \quad \text{with } a_{k+1} \neq 0
\]

\[
D(X) = b_0 + b_1 X + b_2 X^2 + \cdots + b_d X^d \quad \text{with } b_d \neq 0
\]

Sébastien Godillon
Consider the polynomial $P_1(X) = P(X) - a_{k+1}b_d^{-1}X^{k+1-d}D(X) \in \mathbb{K}[X]$. From Proposition 2.6, we have:

$$\deg(a_{k+1}b_d^{-1}X^{k+1-d}D(X)) = \deg(a_{k+1}b_d^{-1}X^{k+1-d}) + \deg(D) = (k + 1 - d) + d = k + 1$$

and

$$\deg(P_1) \leq \max\left\{ \deg(P), \deg(a_{k+1}b_d^{-1}X^{k+1-d}D(X)) \right\} = \max\{k + 1, k + 1\} = k + 1$$

Moreover the coefficient of the term in P_1 with degree $k + 1$ is $a_{k+1} - a_{k+1}b_d^{-1}b_d = 0$. Then we have $\deg(P_1) \leq k$. By inductive hypothesis P_k applied to $P_1(X)$, there exist two polynomials $Q_1(X)$ and $R_1(X)$ such that

$$\begin{cases}
 P_1(X) = Q_1(X)D(X) + R_1(X) \\
 \text{deg}(R_1) < d
\end{cases}$$

Now take $Q(X) = a_{k+1}b_d^{-1}X^{k+1-d} + Q_1(X)$ and $R(X) = R_1(X)$ then we get

$$\begin{cases}
 P(X) = a_{k+1}b_d^{-1}X^{k+1-d}D(X) + P_1(X) = Q(X)D(X) + R(X) \\
 \text{deg}(R) < d
\end{cases}$$

Consequently P_{k+1} is satisfied and the conclusion follows by induction.

Uniqueness. By contradiction, assume $Q_1(X)$, $R_1(X)$ and $Q_2(X)$, $R_2(X)$ are such that

$$\begin{cases}
 P(X) = Q_1(X)D(X) + R_1(X) \\
 \text{deg}(R_1) < \text{deg}(D)
\end{cases} \quad \text{and} \quad \begin{cases}
 P(X) = Q_2(X)D(X) + R_2(X) \\
 \text{deg}(R_2) < \text{deg}(D)
\end{cases}$$

Then $Q_1(X)D(X) + R_1(X) = Q_2(X)D(X) + R_2(X)$ or equivalently

$$(Q_1(X) - Q_2(X))D(X) = R_2(X) - R_1(X)$$

From Proposition 2.6, we have:

$$\begin{cases}
 \deg((Q_1 - Q_2)D) = \deg(Q_1 - Q_2) + \deg(D) \\
 \text{deg}(R_2 - R_1) \leq \max\{\text{deg}(R_1), \text{deg}(R_2)\} < \deg(D)
\end{cases}$$

So we get $\deg(Q_1 - Q_2) < 0$ (since $D(X) \neq 0$ implies $\deg(D) \geq 0$) that is $\deg(Q_1 - Q_2) = -\infty$ and hence $Q_1(X) - Q_2(X) = 0$. It follows $Q_1(X) = Q_2(X)$ and hence $R_1(X) = R_2(X)$. Finally the quotient and the remainder of the polynomial division algorithm are unique. \[\blacksquare\]

Examples: In order to compute the quotient and the remainder of a polynomial division algorithm, one may use a long division algorithm as follows

a) For $P(X) = X^3 - 12X^2 - 42$ and $D(X) = X - 3$

\[
\begin{align*}
X^3 & = X^2 (X - 3) + 3X^2 \\
-12X^2 & = -9X (X - 3) - 27X \\
0 & = -27 (X - 3) - 81 \\
-42 & = 0 (X - 3) - 123
\end{align*}
\]

and the sum of all these equalities gives after simplifications

$$X^3 - 12X^2 - 42 = (X^2 - 9X - 27)(X - 3) - 123$$

that is $Q(X) = X^2 - 9X - 27$ and $R(X) = -123$
2.1. **THE RING $\mathbb{K}[X]$**

b) For $P(X) = X^4 + 7X^3 - 3X^2 - 11X + 5$ and $D(X) = X^2 - 2X - 3$

\[
\begin{align*}
X^4 & = X^2 (X^2 - 2X - 3) + 2X^3 + 3X^2 \\
7X^3 + 2X^3 & = 9X (X^2 - 2X - 3) + 18X^2 + 27X \\
-3X^2 + 3X^2 + 18X^2 & = 18 (X^2 - 2X - 3) + 36X + 54 \\
-11X + 27X + 36X & = 0 (X^2 - 2X - 3) + 52X \\
5 + 54 & = 0 (X^2 - 2X - 3) + 59
\end{align*}
\]

and the sum of all these equalities gives after simplifications

\[X^4 + 7X^3 - 3X^2 - 11X + 5 = (X^2 + 9X + 18)(X^2 - 2X - 3) + 52X + 59\]

that is $Q(X) = X^2 + 9X + 18$ and $R(X) = 52X + 59$

c) For $P(X) = X^5 + X^4 - X - 1$ and $D(X) = X^2 - 1$

\[
\begin{align*}
X^5 & = X^3 (X^2 - 1) + X^3 \\
X^4 & = X^2 (X^2 - 1) + X^2 \\
0 + X^3 & = X (X^2 - 1) + X \\
0 + X^2 & = 1 (X^2 - 1) + 1 \\
-X + X & = 0 (X^2 - 1) \\
-1 + 1 & = 0 (X^2 - 1)
\end{align*}
\]

and the sum of all these equalities gives after simplifications

\[X^5 + X^4 - X - 1 = (X^3 + X^2 + X + 1)(X^2 - 1)\]

that is $Q(X) = X^3 + X^2 + X + 1$ and $R(X) = 0$

Definition 2.8 (Multiple and divisor)

Let $A(X)$ and $B(X)$ be two polynomials in $\mathbb{K}[X]$. We say $B(X)$ divides $A(X)$ or equivalently $A(X)$ is a multiple of $B(X)$ if

\[\exists Q(X) \in \mathbb{K}[X]/ A(X) = Q(X)B(X)\]

In this case, we write $B(X)|A(X)$ or shortly $B|A$.

Remark: A polynomial $B(X) \in \mathbb{K}[X]$ divides a polynomial $A(X) \in \mathbb{K}[X]$ if and only if

- either $B(X) = 0$ and $A(X) = 0$
- or $B(X) \neq 0$ and the remainder from the polynomial division algorithm with dividend $A(X)$ and divisor $B(X)$ is $R(X) = 0$

Proposition 2.9

Let $A(X)$ and $B(X)$ be two polynomials in $\mathbb{K}[X]$. If $B|A$ with $A(X) \neq 0$ then

\[\deg(B) \leq \deg(A)\]

Proof: There exists a polynomial $Q(X) \in \mathbb{K}[X]$ such that $A(X) = Q(X)B(X)$. Moreover $Q(X) \neq 0$ since $A(X) \neq 0$. In particular $\deg(Q) \geq 0$ and from Proposition 2.6

\[\deg(A) = \deg(QB) = \deg(Q) + \deg(B) \geq \deg(B)\]

Sébastien Godillon
Proposition 2.10

The ring \((\mathbb{K}[X], +, \times)\) has no zero divisor. That is

\[\forall (A(X), B(X)) \in (\mathbb{K}[X])^2, \ A(X)B(X) = 0 \implies \text{either } A(X) = 0 \text{ or } B(X) = 0 \]

Proof: Assume \(A(X)B(X) = 0\) with \(B(X) \neq 0\). The polynomial division algorithm with dividend 0 and divisor \(B(X)\) is

\[0 = 0 \times B(X) + 0 \]

But we have

\[0 = A(X) \times B(X) + 0 \]

Consequently the uniqueness part of Theorem 2.7 gives \(A(X) = 0\). \(\blacksquare\)

2.2 Polynomial maps

2.2.1 Definition

Definition 2.11 (Polynomial map)

Let \(P(X)\) be a polynomial in \(\mathbb{K}[X]\) with coefficients \((a_n)_{n \in \mathbb{N}}\). The polynomial map associated to \(P(X)\) is the following map

\[P : \mathbb{K} \rightarrow \mathbb{K} \\
\quad x \mapsto P(x) = \sum_{n=0}^{+\infty} a_n x^n \]

Some examples:

a) The polynomial map associated to \(P(X) = 0\) is the constant map \(x \mapsto 0\).

b) The polynomial map associated to \(P(X) = X\) is the identity map \(x \mapsto x\).

c) The polynomial map associated to \(P(X) = -1 + 2X + X^3 \in \mathbb{R}[X]\) is the cubic map

\[P : \mathbb{R} \rightarrow \mathbb{R} \\
\quad x \mapsto P(x) = x^3 + 2x - 1 \]

d) Recall that \(\mathbb{Z}/2\mathbb{Z} = \{\bar{0}, \bar{1}\}\) is a commutative field since 2 is a prime number. Moreover we have

\[\bar{0} + \bar{0} \times \bar{0} = \bar{0} \quad \text{and} \quad \bar{1} + \bar{1} \times \bar{1} = \bar{2} = \bar{0} \]

Consequently the polynomial map associated to \(P(X) = X + X^2 \in \mathbb{Z}/2\mathbb{Z}[X]\) is the constant map

\[P : \mathbb{Z}/2\mathbb{Z} \rightarrow \mathbb{Z}/2\mathbb{Z} \\
\quad x \mapsto P(x) = \bar{0} \]

But notice \(P(X) \neq 0\).
2.2. POLYNOMIAL MAPS

Proposition 2.12

Denote \(\mathcal{F}(\mathbb{K}) \) the set of all functions from \(\mathbb{K} \) to itself. \(\mathcal{F}(\mathbb{K}) \) has a natural ring structure coming from that one of \(\mathbb{K} \). Then the following map

\[
\begin{align*}
\mathbb{K}[X] & \rightarrow \mathcal{F}(\mathbb{K}) \\
P(X) & \mapsto P
\end{align*}
\]

is a ring homomorphism. In particular for any given \(\alpha \in \mathbb{K} \), the following map

\[
\begin{align*}
\mathbb{K}[X] & \rightarrow \mathbb{K} \\
P(X) & \mapsto P(\alpha)
\end{align*}
\]

is a ring homomorphism as well.

Proof: Everything comes from the definitions of addition and multiplication of two polynomials and from the ring homomorphism \(\mathcal{F}(\mathbb{K}) \rightarrow \mathbb{K}, f \mapsto f(\alpha) \).

\[\Box\]

2.2.2 Derivative polynomial

Definition 2.13 (Derivative polynomial)

Let \(P(X) \) be a polynomial in \(\mathbb{K}[X] \) with coefficients \((a_n)_{n \in \mathbb{N}} \). The **derivative polynomial** of \(P(X) \) is the following polynomial

\[
P'(X) = a_1 + 2a_2 X + 3a_3 X^2 + \cdots = \sum_{n=0}^{+\infty} (n+1)a_{n+1}X^n = \sum_{n=1}^{+\infty} na_nX^{n-1}
\]

By induction over \(k \geq 1 \), we define the \(k \)th **order polynomial derivative**, denoted \(P^{(k)}(X) \), to be the polynomial derivative of \(P^{(k-1)}(X) \) with the notation \(P^{(0)} = P \) (and then \(P^{(1)} = P' \)).

Remarks:

- Notice that any integer \(n \in \mathbb{N} \) may be considered in \(\mathbb{K} \) if we write it as follows

\[
n = \underbrace{1 + 1 + \cdots + 1}_{n \text{ times}} \in \mathbb{K} \quad \text{with} \ 1 \in \mathbb{K}
\]

In particular the derivative polynomial of any polynomial with coefficients in \(\mathbb{K} \) is well in \(\mathbb{K}[X] \).

- The polynomial map \(P' \) associated to the derivative polynomial \(P'(X) \) of a polynomial \(P(X) \) is the derivative of the map \(P \) as expected. But limit, differentiation or any calculus tool are not needed here to define the derivative of a polynomial map.

Example: Consider \(P(X) = -7 + 8X - 5X^2 + 2X^3 - X^5 \in \mathbb{R}[X] \). Then

\[
\begin{align*}
P'(X) &= P^{(1)}(X) = 8 - 10X + 6X^2 - 5X^4 \\
P^{(2)}(X) &= -10 + 12X - 20X^3 \\
P^{(3)}(X) &= 12 - 60X^2 \\
P^{(4)}(X) &= -120X \\
P^{(5)}(X) &= -120 \\
P^{(6)}(X) &= 0
\end{align*}
\]

etc.
Proposition 2.14

The following properties hold

1. ∀(P(X), Q(X)) ∈ \(\mathbb{K}[X] \)^2 \(\begin{cases} (P + Q)'(X) = P'(X) + Q'(X) \\ (PQ)'(X) = P'(X)Q(X) + P(X)Q'(X) \end{cases} \)

2. Consider the polynomial \(P(X) = X^n \) with \(n \in \mathbb{N} \). Then

\[
\forall k \geq 1, \quad (P^{(k)})(X) = \begin{cases} \frac{n!}{(n-k)!}X^{n-k} & \text{if } 1 \leq k \leq n \\ 0 & \text{if } k \geq n + 1 \end{cases}
\]

where \(\frac{n!}{(n-k)!} = n(n-1)(n-2)\ldots(n-k+1) \)

3. \(P(X) \in \mathbb{K}[X] \) is a constant polynomial if and only if \(P'(X) = 0 \)

4. If \(P(X) \in \mathbb{K}[X] \) is a non constant polynomial then \(\deg(P') = \deg(P) - 1 \)

More generally, if \(P^{(k)}(X) \neq 0 \) for some \(k \geq 1 \) then \(\deg(P^{(k)}) = \deg(P) - k \)

Proof: 1. Denote respectively \((a_n)_{n \in \mathbb{N}} \) and \((b_n)_{n \in \mathbb{N}} \) the coefficients of \(P(X) \) and \(Q(X) \). Then

\[
(P + Q)'(X) = \sum_{n=1}^{+\infty} n(a_n + b_n)X^{n-1} = \sum_{n=1}^{+\infty} na_nX^{n-1} + \sum_{n=1}^{+\infty} nb_nX^{n-1} = P'(X) + Q'(X)
\]

And, using new indices \(n' = n - 1 \), \(k' = k - 1 \) and \(\ell' = \ell - 1 \), we get

\[
(PQ)'(X) = \sum_{n=1}^{+\infty} n \left(\sum_{k,\ell \in \mathbb{N}} a_k b_\ell \right) X^{n-1}
\]

\[
= \sum_{n=1}^{+\infty} \left(\sum_{k,\ell \in \mathbb{N}} (k + \ell)a_k b_\ell \right) X^{n-1}
\]

\[
= \sum_{n'=0}^{+\infty} \left(\sum_{k',\ell' \in \mathbb{N}} (k' + 1)a_{k'+1} b_{\ell'} \right) X^{n'} + \sum_{n'=0}^{+\infty} \left(\sum_{k,\ell \in \mathbb{N}} a_k (\ell' + 1)b_{\ell'+1} \right) X^{n'}
\]

\[
= \sum_{n'=0}^{+\infty} \left(\sum_{k'=0}^{+\infty} (k' + 1)a_{k'+1} X^{k'} \right) \left(\sum_{\ell=0}^{+\infty} b_\ell X^{\ell} \right) + \sum_{n'=0}^{+\infty} \left(\sum_{k=0}^{+\infty} a_k X^k \right) \left(\sum_{\ell'=0}^{+\infty} (\ell' + 1)b_{\ell'+1} X^{\ell'} \right)
\]

\[
= P'(X)Q(X) + P(X)Q'(X)
\]

2. An induction over the order \(k \geq 1 \) gives the result.

3. If \(P(X) = a_0 \in \mathbb{K} \) then \(P'(X) = 0 \) by definition of the polynomial derivative. Conversely, \(P'(X) = \sum_{n=1}^{+\infty} na_nX^{n-1} = 0 \) implies that \(a_n = 0 \) for every \(n \geq 1 \). The result follows.

4. Let \(P(X) \) be a non constant polynomial in \(\mathbb{K}[X] \) and denote by \(a_{\deg(P)} \) its leading coefficient. By definition of the polynomial derivative, we have \(\deg(P') \leq \deg(P) - 1 \). Moreover the coefficient of the term with degree \(n = \deg(P) - 1 \) is \(\deg(P)a_{\deg(P)} \) which is not zero since \(\deg(P) \geq 1 \) (\(P \) is non constant) and \(a_{\deg(P)} \neq 0 \) (as leading coefficient of \(P(X) \)). Thus, we have \(\deg(P') = \deg(P) - 1 \). The remain follows by induction over the order \(k \geq 1 \).
Corollary 2.15

Let $P(X)$ be a polynomial in $\mathbb{K}[X]$ of degree $d = \deg(P)$. Then

$$\forall k \geq d + 1, \quad P^{(k)}(X) = 0$$

Theorem 2.16 (Exact Taylor’s formula)

Let $P(X)$ be a polynomial in $\mathbb{K}[X]$ of degree $d = \deg(P)$. Then

$$P(X) = P(0) + P'(0)X + \frac{P^{(2)}(0)}{2}X^2 + \cdots + \frac{P^{(d)}(0)}{d!}X^d = \sum_{n=0}^{d} \frac{P^{(n)}(0)}{n!}X^n$$

where $\frac{1}{n!} = (1 \times 2 \times 3 \times \cdots \times n)^{-1}$

More generally, for any $a \in \mathbb{K}$ we have

$$P(X) = \sum_{n=0}^{d} \frac{P^{(n)}(a)}{n!}(X - a)^n$$

Proof: Call $R(X)$ the following polynomial

$$R(X) = P(X) - \sum_{n=0}^{d} \frac{P^{(n)}(a)}{n!}(X - a)^n$$

We will prove by induction for every integer k with $0 \leq k \leq d$ that $R^{(d-k)}(X) = 0$. In particular, $k = d$ will give the result. At first, using Proposition 2.6, we have:

$$\det(R) \leq \max \left\{ \deg(P), \deg \left(\sum_{n=0}^{d} \frac{P^{(n)}(a)}{n!}(X - a)^n \right) \right\} \leq d$$

Then from Corollary 2.15 and Proposition 2.14, we get $(R^{(d)})'(X) = R^{(d+1)}(X) = 0$ that is $R^{(d)}(X)$ is a constant polynomial. Consequently Proposition 2.14 gives

$$R^{(d)}(X) = R^{(d)}(a) = P^{(d)}(a) - \sum_{n=0}^{d-1} \frac{P^{(n)}(a)}{n!}(0) - \frac{P^{(d)}(a)}{d!}d! = P^{(d)}(a) - P^{(d)}(a) = 0$$

So the inductive hypothesis is true for $k = 0$. Now assume the inductive hypothesis is satisfied for a given integer k with $0 \leq k \leq d - 1$. Then $(R^{(d-k-1)})'(X) = R^{(d-k)}(X) = 0$ that is $R^{(d-k-1)}(X)$ is a constant polynomial. Consequently Proposition 2.14 gives

$$R^{(d-k-1)}(X) = R^{(d-k-1)}(a)$$

$$= P^{(d-k-1)}(a) - \sum_{n=0}^{d-k-2} \frac{P^{(n)}(a)}{n!}(0) - \frac{P^{(d-k-1)}(a)}{(d-k-1)!}(d-k-1)!$$

$$- \sum_{n=d-k}^{d} \frac{P^{(n)}(a)}{n!}(n-(d-k-1))!(a-a)^n$$

$$= P^{(d-k-1)}(a) - P^{(d-k-1)}(a) - 0$$

$$= 0$$

Finally the inductive hypothesis is still true for $k + 1$. The result follows by induction.
CHAPTER 2. POLYNOMIALS

2.2.3 Root

Definition 2.17 (Root)
\[\alpha \in \mathbb{K} \text{ is said to be a root of polynomial } P(X) \in \mathbb{K}[X] \text{ if } P(\alpha) = 0. \]

Example: 1 and 3 are roots of \(P(X) = 3 - 4X + X^2 \) since \(P(1) = 3 - 4 + 1 = 0 \) and \(P(3) = 3 - 12 + 9 = 0 \).
Actually \(P(X) = (X - 1)(X - 3) \) in order that \((X - 1) | P(X) \) and \((X - 3) | P(X) \).

Example: 1 and \(-1\) are roots of \(P(X) = 1 - 2X^2 + X^4 = (X^2 - 1)^2 = (X - 1)^2(X + 1)^2 \).

Proposition 2.18
\[\alpha \in \mathbb{K} \text{ is a root of } P(X) \in \mathbb{K}[X] \text{ if and only if } (X - \alpha) | P(X). \]

Proof: Sufficient. If \((X - \alpha) | P(X) \) then there exists a polynomial \(Q(X) \in \mathbb{K}[X] \) such that \(P(X) = (X - \alpha)Q(X) \) and then \(P(\alpha) = (\alpha - \alpha)Q(\alpha) = 0. \)

Necessary. From Theorem 2.7, we get two polynomials \(Q(X) \) and \(R(X) \) such that

\[
\begin{align*}
 P(X) &= (X - \alpha)Q(X) + R(X) \\
 \deg(R) &< \deg(X - \alpha) = 1
\end{align*}
\]

In particular, \(R(X) \) is a constant polynomial that is \(R(X) = r \in \mathbb{K} \). But \(\alpha \) is a root of \(P(X) \) implies

\[
0 = P(\alpha) = (\alpha - \alpha)Q(\alpha) + r = r
\]

Consequently \(R(X) = 0 \) and \(P(X) = (X - \alpha)Q(X) \) as needed. \(\square \)

Further example:

a) The polynomial \(P(X) = 1 + X^2 \in \mathbb{R}[X] \) has no root since \(\forall x \in \mathbb{R}, P(x) = 1 + x^2 \geq 1 > 0 \). In particular, \(P(X) \) can not be written as a product of two linear polynomials in \(\mathbb{R}[X] \).

b) But \(i \) and \(-i\) are roots of \(Q(X) = 1 + X^2 \in \mathbb{C}[X] \) since \(Q(X) = (X - i)(X + i) \).

Definition 2.19 (Root of higher multiplicity)

Let \(k \geq 1 \) be a positive integer. \(\alpha \in \mathbb{K} \) is said to be a root of multiplicity \(k \) of a polynomial \(P(X) \in \mathbb{K}[X] \) if \((X - \alpha)^k | P(X) \) and \((X - \alpha)^{k+1} \nmid P(X) \), or equivalently if

\[\exists Q(X) \in \mathbb{K}[X] / P(X) = (X - \alpha)^kQ(X) \text{ and } Q(\alpha) \neq 0 \]

Furthermore, the multiplicity of a root \(\alpha \in \mathbb{K} \) of a polynomial \(P(X) \neq 0 \) is the following positive integer

\[k_\alpha = \max \{ k \geq 1 / (X - \alpha)^k | P(X) \} \]

Proposition 2.20
\[\alpha \in \mathbb{K} \text{ is a root of multiplicity } k \geq 1 \text{ of the polynomial } P(X) \neq 0 \text{ if and only if } \]
\[
P(\alpha) = P'(\alpha) = P''(\alpha) = \cdots = P^{(k-1)}(\alpha) = 0 \text{ and } P^{(k)}(\alpha) \neq 0
\]
Remark: In particular, the inequality of Proposition 2.21 becomes an equality in
Theorem 2.22 (Fundamental theorem of algebra).

\[P(X) = \sum_{n=0}^{+\infty} \frac{P^{(n)}(\alpha)}{n!} (X - \alpha)^n \]

\[= \sum_{n=0}^{k-1} \frac{P^{(n)}(\alpha)}{n!} (X - \alpha)^n + \sum_{n=k}^{+\infty} \frac{P^{(n)}(\alpha)}{n!} (X - \alpha)^n \]

\[= 0 + (X - \alpha)^k \sum_{n=0}^{+\infty} \frac{P^{(n+k)}(\alpha)}{(n+k)!} (X - \alpha)^n \]

\[= (X - \alpha)^k Q(X) \]

with \(Q(\alpha) = \frac{P^{(k)}(\alpha)}{k!} + \sum_{n=1}^{+\infty} \frac{P^{(n+k)}(\alpha)}{(n+k)!} (\alpha - \alpha)^n = \frac{P^{(k)}(\alpha)}{k!} + 0 \neq 0 \) since \(P^{(k)}(\alpha) \neq 0 \)

\[\text{Necessary. If } P(X) = (X - \alpha)^k Q(X) \text{ with } Q(\alpha) \neq 0 \text{ then Proposition 2.14 gives} \]

\[P(\alpha) = P'(\alpha) = P''(\alpha) = \cdots = P^{(k-1)}(\alpha) = 0 \text{ and } P^{(k)}(\alpha) = k!Q(\alpha) \neq 0 \]

Proposition 2.21

Let \(P(X) \neq 0 \) be a polynomial in \(\mathbb{K}[X] \). Denote by \(k_1, k_2, \ldots, k_n \) the multiplicities of the roots of \(P(X) \). Then

\[k_1 + k_2 + \cdots + k_n \leq \deg(P) \]

In particular \(P(X) \) has at most \(\deg(P) \) roots.

Proof: Denote by \(\alpha_1, \alpha_2, \ldots, \alpha_n \) the roots of \(P(X) \) associated to the multiplicities \(k_1, k_2, \ldots, k_n \). Then the polynomial \((X - \alpha_1)^{k_1} (X - \alpha_2)^{k_2} \cdots (X - \alpha_n)^{k_n} \) divides \(P(X) \). But from Proposition 2.6 we have:

\[\deg \left((X - \alpha_1)^{k_1} (X - \alpha_2)^{k_2} \cdots (X - \alpha_n)^{k_n} \right) = k_1 + k_2 + \cdots + k_n \]

Hence, the conclusion follows from Proposition 2.9.

To conclude, just state the following important and powerful result without proof.

Theorem 2.22 (Fundamental theorem of algebra)

Every non constant polynomial in \(\mathbb{C}[X] \) has at least one root.

Remark: In particular, the inequality of Proposition 2.21 becomes an equality in \(\mathbb{C}[X] \). More precisely, any non constant polynomial \(P(X) \in \mathbb{C}[X] \) may be written as a product of linear polynomials:

\[P(X) = C(X - \alpha_1)^{k_1} (X - \alpha_2)^{k_2} \cdots (X - \alpha_n)^{k_n} \]

where

- \(C \in \mathbb{C}^* \) is the leading coefficient of \(P(X) \)
- \(\alpha_1, \alpha_2, \ldots, \alpha_n \) are the roots of \(P(X) \)
- \(k_1, k_2, \ldots, k_n \) are their associated multiplicities