Test n° 1
(1 hour)

Question about course 1. Recall the axioms that a ring $(R, +, \times)$ must satisfy.

Exercise 2. Prove by induction the following claim for every integer $n \in \mathbb{N}$

$$6^{2n+1} + 2^{3n+1} \equiv 1 \ [7]$$

Problem 3. Consider the following set

$$A = \left\{ a + b\sqrt{2} / (a,b) \in \mathbb{Z}^2 \right\}$$

1. Assuming $\sqrt{2} \notin \mathbb{Q}$ (that is there exist no integers p and q such that $\sqrt{2} = \frac{p}{q}$), show that

$$\forall a + b\sqrt{2} \in A, \ a + b\sqrt{2} = 0 \iff a = b = 0$$

2. Prove that $(A, +, \times)$ is a commutative unital ring but not a field.

3. Consider the following maps

$$\varphi : A \rightarrow A \quad \text{and} \quad N : A \rightarrow A \quad \text{where} \quad x \mapsto x \times \varphi(x)$$

(a) Prove that

$$\left\{ \begin{array}{ll} \forall x \in A, & N(x) \in \mathbb{Z} \\ \forall (x,y) \in A^2, & N(xy) = N(x)N(y) \end{array} \right.$$

(b) Deduce that

$$\forall x \in A, \ x \text{ has a multiplicative inverse in } A \iff N(x) = 1 \text{ or } -1$$

Problem 4. Consider the following map for some parameter $\lambda \in \mathbb{R}^*$

$$f_\lambda : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \quad \text{where} \quad (x,y) \mapsto \left(\lambda x, \frac{y}{\lambda}\right)$$

1. Prove that f_λ is a group endomorphism from $(\mathbb{R}^2, +)$ to itself.

2. Consider the following set

$$F = \{ f_\lambda / \lambda \in \mathbb{R}^* \}$$

(a) Determine $f_\lambda \circ f_\mu$ for any λ and μ in \mathbb{R}^*.

(b) Deduce that \circ is a binary operation on F.

(c) Prove that (F, \circ) is a group.

3. Consider the following map

$$h : \mathbb{R}^* \rightarrow F \quad \text{where} \quad \lambda \mapsto f_\lambda$$

(a) Prove that h is a group isomorphism from (\mathbb{R}^*, \times) to (F, \circ).

(b) Deduce that (F, \circ) is an abelian group.