Corrigé du devoir maison n° 3

Exercice 1 : 1. – On intègre par parties en posant \(u(x) = \ln^3(x), v'(x) = 1 \) donc \(u'(x) = 3 \frac{1}{x}, \ln^2(x) = \frac{3\ln^2(x)}{x} \),

\[v(x) = x : \]

\[I_1 = \int_1^e \ln^3(x) dx = \int_1^e \ln^3(x) dx = \int_1^e u(x).v'(x) dx \]

\[= [u(x).v(x)]_1^e - \int_1^e u'(x).v(x) dx = [\ln^3(x).x]_1^e - 3 \int_1^e \ln^2(x) \frac{1}{x} . dx \]

\[= (1.e - 0.1) - 3 \int_1^e \ln^2(x) dx = e - 3 \int_1^e \ln^2(x) dx \]

On intègre à nouveau par parties en posant \(u(x) = \ln^2(x), v'(x) = 1 \) donc \(u'(x) = 2 \frac{1}{x}, \ln(x) = \frac{2\ln(x)}{x} \),

\[v(x) = x : \]

\[I_1 = -2e + 6 \int_1^e \ln(x) dx = -2e + 6 \int_1^e \ln(x) dx = -2e + 6 \int_1^e u(x).v'(x) dx \]

\[= -2e + 6 \left([u(x).v(x)]_1^e - \int_1^e u'(x).v(x) dx \right) = -2e + 6 [\ln^2(x).x]_1^e - 6 \int_1^e \frac{1}{x} . dx \]

\[= -2e + 6 (1.e - 0.1) - 6 \int_1^e 1 dx = 4e - 6 [x]_1^e = 4e - 6(e - 1) = 6 - 2e \]

– On intègre par parties en posant \(u(x) = \sqrt[3]{3 + 2x - x^2}, v'(x) = 1 \) donc \(u'(x) = \frac{2-2x}{2\sqrt[3]{3+2x-x^2}}, = \frac{1-x}{\sqrt[3]{3+2x-x^2}} \),

\[v(x) = x : \]

\[I_2 = \int_{-1}^{3} \sqrt[3]{3 + 2x - x^2} dx = \int_{-1}^{3} \sqrt[3]{3 + 2x - x^2} . dx = \int_{-1}^{3} u(x).v'(x) dx \]

\[= [u(x).v(x)]_{-1}^{3} - \int_{-1}^{3} u'(x).v(x) dx = \left(\sqrt[3]{3 + 2x - x^2} . x \right)_{-1}^{3} - \int_{-1}^{3} \frac{1-x}{\sqrt[3]{3+2x-x^2}} . dx \]

\[= (3\sqrt[3]{3} - 9 + \sqrt[3]{3} - 2) - \int_{-1}^{3} \frac{x - x^2}{\sqrt[3]{3} + 2x - x^2} dx \]

\[= 0 - \int_{-1}^{3} \left(\frac{3 + 2x - x^2}{\sqrt[3]{3} + 2x - x^2} + \frac{3-x}{\sqrt[3]{3} + 2x - x^2} \right) dx \]

\[= - \int_{-1}^{3} \sqrt[3]{3 + 2x - x^2} dx - \int_{-1}^{3} \left(\frac{2 - 2x}{2\sqrt[3]{3} + 2x - x^2} - \frac{4}{\sqrt[3]{3} + 2x - x^2} \right) dx \]

\[= -J_2 - \left(\sqrt[3]{3 + 2x - x^2} \right)_{-1}^{3} + 4 \int_{-1}^{3} \frac{1}{2\sqrt[3]{1 - \left(\frac{1-x}{2} \right)^2}} . dx \]

\[= -J_2 - (\sqrt[3]{3 + 6 - 9} - \sqrt[3]{3 - 2} + 1) + 4 \int_{-1}^{3} \frac{1}{2\sqrt[3]{1 - \left(\frac{1-x}{2} \right)^2}} . dx \]

\[= -J_2 - 4 \int_{-1}^{3} \frac{1}{2\sqrt[3]{1 - \left(\frac{1-x}{2} \right)^2}} . dx = -J_2 - 4 \left[\arcsin \left(\frac{1-x}{2} \right) \right]_{-1}^{3} \]

\[= -J_2 - 4 \left(\arcsin(1) - \arcsin(-1) \right) = -J_2 - 4 \left(\frac{\pi - \pi}{2} \right) = -J_2 + 4 \pi \]

On en déduit que \(2J_2 = 4\pi \) et donc que \(J_2 = 2\pi \).
Exercice 2 :

1. On a $\tan(x+\pi) = (1-\tan(x))(1-\tan(x)) = (1-\tan(x))$ pour tout $x \in [0, \frac{\pi}{4}]$. Ainsi on pose $t = \tan(x)$ d’après les règles de Bioche, donc $dt = (1+\tan^2(x))dx = \frac{dx}{\cos^2(x)}$, $t = 0$ si $x = 0$ et $t = 1$ si $x = \frac{\pi}{2}$. Ainsi :

\[
J_1 = \int_0^{\pi/4} \frac{\tan(x)(1-\tan(x))}{\cos^2(x)} \, dx = \int_0^{\pi/4} \tan(x)(1-\tan(x)) \, dx \frac{dx}{\cos^2(x)}
\]

\[
= \int_0^1 (1-t) \, dt = \int_0^1 (t - t^2) \, dt = \left[\frac{t^2}{2} - \frac{t^3}{3} \right]_0^1 = 1 - \frac{1}{2} = \frac{1}{2}
\]

- On pose $t = \tan \left(\frac{x}{2} \right)$, donc $dt = \frac{1}{2} \left(1 + \tan^2 \left(\frac{x}{2} \right) \right) \, dx = \frac{dx}{\cos(x)}$ d’après l’aire du domaine de coordonnées (1;0). Ainsi :

\[
J_2 = \int_0^{\pi/2} \frac{dx}{2 - \cos(x)} = \int_0^{\pi/2} \frac{1}{2 - \cos(x)} \, dx \frac{dt}{\cos(x)}
\]

\[
= \int_0^1 \frac{dt}{2 - \left(\frac{1-t^2}{1+t^2} \right)} = \int_0^1 \frac{dt}{2(1+t^2) - (1-t^2)} = 2 \int_0^1 \frac{dt}{\sqrt{3}t^2 + 1} = \frac{2\sqrt{3}}{3} \left(\frac{1}{\sqrt{3}} \right) = \frac{2\sqrt{3}}{3} \left(\arctan \left(\frac{\sqrt{3}}{3} \right) - 0 \right) = \frac{2\sqrt{3}}{3} \pi = \frac{2\pi\sqrt{3}}{9}
\]

2. En posant $x = \frac{\pi}{2} + h$ on a :

\[
\frac{1}{2 - \cos(x)} = \frac{1}{2 - \cos \left(\frac{\pi}{2} + h \right)} = \frac{1}{2 - \sin(h)} = \frac{1}{2 + \sin(h)} = \frac{1}{2 + \frac{h}{2}} = \frac{1}{2 + \frac{h}{4}} + \frac{h}{4} = \frac{1}{2} - \frac{1}{4} \left(x - \pi \right) = \frac{1}{2} - \frac{1}{4} \left(x - \pi \right)
\]

Ainsi la tangente T à la courbe C d’équation $y = \frac{1}{2 - \cos(x)}$ au point d’abscisse $\frac{\pi}{2}$ a pour équation $y = \frac{1}{2} - \frac{1}{4} \left(x - \frac{\pi}{2} \right)$. Puisque C est au-dessus de T entre les axes verticaux d’équations $x = 0$ et $x = \frac{\pi}{2}$, l’aire du domaine compris entre C, T et ces deux axes verticaux est donnée par $A = \int_0^{\pi/2} \frac{\cos(x) - \frac{1}{2} \left(x - \frac{\pi}{2} \right)}{2 - \cos(x)} \, dx = J_2 - \left[\frac{\pi}{4} \left(\frac{\pi}{2} - \frac{x}{2} \right) \right]_0^{\pi/2} = \frac{2\pi\sqrt{3}}{9} - \left(\frac{\pi}{4} \left(\frac{\pi}{2} - \frac{x}{2} \right) \right) = \frac{2\pi\sqrt{3}}{9} - \frac{\pi^2}{16}
\]

Exercice 3 :

1. On a $X^2(X-1)^2 = X^4 - 2X^3 + X^2$ et $(X+1)^2(X+2)^2 = (X^2 + 2X + 1)(X^2 + 4X + 4) = X^4 + 6X^3 + 13X^2 + 12X + 4$ donc $X^2(X-1)^2 = (X+1)^2(X+2)^2 - (8X^3 + 12X^2 + 12X + 4)$ avec deg $(8X^3 + 12X^2 + 12X + 4) = 3 < 4 = \deg ((X+1)^2(X+2)^2)$. Donc d’après le théorème de décomposition en éléments simples :

\[
\frac{X^2(X-1)^2}{(X+1)^2(X+2)^2} = 1 - \frac{a}{X+1} + \frac{b}{(X+1)^2} + \frac{c}{X+2} + \frac{d}{(X+2)^2}
\]

En multipliant cette égalité par $(X+1)^2$ puis en posant $X = -1$ on obtient $\frac{-1^2}{(1+1)^2} = b \Rightarrow b = 4$. De même en multipliant par $(X+2)^2$ puis en posant $X = -2$ on obtient $\frac{-2^2}{(2+1)^2} = d \Rightarrow d = 36$. En posant $X = 0$ l’égalité donne $0 = 1 + a + b + \frac{c}{2} + \frac{d}{4} \Rightarrow a + \frac{c}{2} = -1 - b - \frac{d}{4} = -14$, et en posant $X = 1$ elle donne $1 + \frac{a}{2} + \frac{b}{2} + \frac{c}{4} + \frac{d}{4} \Rightarrow 1 + \frac{c}{4} = -1 - \frac{d}{4} = -6$. On obtient donc un système de deux équations à deux inconnues a et c dont la solution est $a = 4(-14) - 6 = -20$ et $c = 2(-14 - a) = 12$. Ainsi :

\[
K_1 = \int_0^1 \frac{x^2(x-1)^2}{(x+1)(x+2)^2} \, dx = \int_0^1 \left(1 - \frac{20}{x+1} + \frac{4}{(x+1)^2} + \frac{12}{x+2} + \frac{36}{(x+2)^2} \right) \, dx
\]

\[
= \left[x \left(-20 \ln(x+1) \right)_0^1 + 4 \left(\frac{1}{x+1} \right)_0^1 + 12 \ln(x+2) \right]_0^1 + 36 \left[\frac{1}{x+2} \right]_0^1
\]

\[
= (1 - 20(\ln(2) - 0) + 4 \left(\frac{1}{2} + 1 \right) + 12(\ln(3) - \ln(2)) + 36 \left(\frac{1}{3} + \frac{1}{2} \right)
\]

\[
= 9 + 12 \ln(3) - 32 \ln(2)
\]
Exercice 4 :

- On a $X^2 - 2X + 10 = (X - 1)^2 + 9 = 9 \left(\left(\frac{X - 1}{3} \right)^2 \right) \geq 9 > 0$ en particulier le polynôme $X^2 - 2X + 10$ est irréductible. De plus $\deg (X(X+8)) = 2 < 4 = \deg ((X^2 - 2X + 10)^2)$, donc d’après le théorème de décomposition en éléments simples :

$\frac{X(X+8)}{(X^2 - 2X + 10)^2} = \frac{aX + b}{X^2 - 2X + 10} + \frac{cX + d}{(X^2 - 2X + 10)^2}$ où $a, b, c, d \in \mathbb{R}$.

Si on réduit au même dénominateur le membre de droite de cette égalité, on obtient pour numérateur :

$(aX + b)(X^2 - 2X + 10) + (cX + d)(X^2 - 2X + 10)^2 = aX^3 + (-2a + b)X^2 + (10a - 2b + c)X + (10b + d)$

En comparant ce polynôme avec le numérateur $X(X + 8) = X^2 + 8X$ on obtient : $a = 0$, $-2a + b = 1 \Rightarrow b = 1$, $10a - 2b + c = 8 \Rightarrow c = 10$ et $10b + d = 0 \Rightarrow d = -10$. Ainsi :

$K_2 = \int_1^4 \frac{x(x + 8)}{(x^2 - 2x + 10)^2} dx = \int_1^4 \left(\frac{1}{x^2 - 2x + 10} + \frac{10x - 10}{(x^2 - 2x + 10)^2} \right) dx$

$= \int_1^4 \frac{1}{9 \left(\left(\frac{x - 1}{3} \right)^2 + 1 \right)} \left(\frac{1}{x - 1} \right) dx + \int_1^4 \frac{2x - 2}{(x^2 - 2x + 10)^2} dx$

$= \frac{1}{3} \int_1^4 \frac{1}{\left(\frac{x - 1}{3} \right)^2 + 1} dx + \frac{5}{18} \left[\frac{-1}{x^2 - 2x + 10} \right]_1^4$

$= \frac{1}{3} \left(\arctan \left(\frac{x - 1}{3} \right) \right)_1^4 + \frac{5}{18} \left[\frac{-1}{18} - \frac{-1}{9} \right]$

$= \frac{1}{3} \left(\arctan(1) - \arctan(0) \right) + \frac{5}{18} \left(\frac{\pi}{4} - 0 \right) = \frac{5}{18} + \frac{\pi}{12}$

2. S est un solide de révolution autour de l’axe des abscisses. Chaque section d’abscisse $x \in [0, 1]$ est un disque de rayon $R(x) = \frac{x(x - 1)}{(x + 1)(x + 2)}$. Le volume de S est donc donné par $V = \int_0^1 \pi R(x)^2 dx = \pi K_1 = (9 + 12 \ln(3) - 32 \ln(2)) \pi$.

Exercice 4 :

1. On intègre par parties en posant $u(x) = \sin^{n-1}(x)$, $v'(x) = \sin(x)$ donc $u'(x) = (n-1)\cos(x)\sin^{n-2}(x)$, $v(x) = -\cos(x)$:

$W_n = \int_0^{\pi/2} \sin^n(x) dx = \int_0^{\pi/2} \sin^{n-1}(x) \sin(x) dx$

$= \left[\sin^{n-1}(x)(-\cos(s)) \right]_{\pi/2}^0 - \int_0^{\pi/2} (n-1)\cos(x)\sin^{n-2}(x)(-\cos(x)) dx$

$= (1.0 - 0.1) + (n - 1) \int_0^{\pi/2} \sin^{n-2}(x)\cos^2(x) dx$

$= 0 + (n - 1) \int_0^{\pi/2} \sin^{n-2}(x)(1 - \sin^2(x)) dx$

$= (n - 1) \left(\int_0^{\pi/2} \sin^{n-2}(x) dx - \int_0^{\pi/2} \sin^n(x) dx \right) = (n - 1) (W_{n-2} - W_n)$

On obtient $(1 + (n-1))W_n = nW_n = (n - 1)W_{n-2}$ et par conséquent $W_n = \frac{n-1}{n} W_{n-2}$.

2. On a $W_0 = \int_0^{\pi/2} 1 dx = \left[x \right]_0^{\pi/2} = \frac{\pi}{2} - 0 = \frac{\pi}{2}$ et $W_1 = \int_0^{\pi/2} \sin(x) dx = [-\cos(x)]_{\pi/2}^0 = 0 - (-1) = 1$, donc en utilisant la question précédente : $W_2 = \frac{\pi}{2} - \frac{1}{2} W_0 = \frac{\pi}{2} - \frac{1}{2} \times \frac{\pi}{2} = \frac{\pi}{4}$ et $W_{2,1+1} = \frac{3}{4} W_0 = \frac{3}{4} \times \frac{\pi}{2} = \frac{3\pi}{8}$ ce qui prouve que le résultat est vrai au rang $p=1$. On suppose ensuite le résultat vrai au rang $p-1 \in \mathbb{N}$ et on va le démontrer au rang p en utilisant encore la question précédente :

$W_{2p} = \frac{2p-1}{2p} W_{2p-2} = \frac{2p-1}{2p} W_{2(p-1)} = \frac{2p-1}{2p} \left((p-1) \frac{2p-1}{2p} \right) \left((p-1) \frac{2p-1}{2p} \right) \ldots \frac{3}{2} \times 3.1 \pi \frac{2}{2}$

$= \frac{2p(2p-2)(2p-4) \ldots 4.2}{2}$

$W_{2p+1} = \frac{2p+1}{2p+1} W_{2p+1-2} = \frac{2p+1}{2p+1} W_{2(p-1)+1} = \frac{2p+1}{2p+1} \left((2p-1) \frac{2p+1}{2p+1} \right) \left((2p-1) \frac{2p+1}{2p+1} \right) \ldots \frac{3}{2} \times 3.1 \pi \frac{2}{2}$

$= \frac{2p(2p-2)(2p-4) \ldots 4.2}{2}$

Ainsi le résultat est vrai au rang p s’il l’est au rang $p-1$. On conclut en utilisant le principe de récurrence.
Exercice 5 :
1. On pose

\[\pi \in \mathbb{R} \],

Puisque \(0 \leq \sin(x) \leq 1 \) on en déduit en multipliant cette inégalité par \(\sin^{2p}(x) \geq 0 \)
que \(0 \leq \sin^{2p+1}(x) \leq \sin^{2p}(x) \) et en multipliant par \(\sin^{2p-1}(x) \geq 0 \) que \(0 \leq \sin^{2p}(x) \leq \sin^{2p-1}(x) \). Finalement on a
\(0 \leq \sin^{2p+1}(x) \leq \sin^{2p}(x) \leq \sin^{2p-1}(x) \) puis en intégrant par rapport à \(x \) : \(0 \leq W_{2p+1} \leq W_{2p} \leq W_{2p-1} \). Si on divise cette inégalité par \(W_{2p+1} > 0 \) on obtient \(1 \leq \frac{W_{2p}}{W_{2p+1}} \leq \frac{W_{2p-1}}{W_{2p+1}} \). Or d’après la première question \(\frac{W_{2p-1}}{W_{2p+1}} = \frac{(2p+1)}{2} \). Donc \(\lim_{p \to +\infty} \frac{W_{2p-2}}{W_{2p}} = \lim_{p \to +\infty} \frac{W_{2p+1}}{W_{2p}} = \lim_{p \to +\infty} 1 + \frac{1}{2p} = 1 + 0 = 1 \) ce qui entraîne, d’après le théorème d’encadrement des limites, que \(\lim_{p \to +\infty} \frac{W_{2p}}{W_{2p+1}} = 1 \).

4. D’après la deuxième question on a pour tout \(p \in \mathbb{N}^* \):

\[
\frac{1}{p} \left(\frac{2p.(2p-2) \ldots 4.2}{(2p-1)(2p-3) \ldots 3.1} \right)^2 = \frac{1}{p} \left(\frac{2p.(2p-2) \ldots 4.2}{(2p+1)(2p-1) \ldots 3.1} \right)^2 \frac{\pi}{2}
\]

\[
= \frac{1}{p} \left(\frac{2p.(2p-2) \ldots 4.2}{(2p+1)(2p-1) \ldots 3.1} \right)^2 \frac{\pi}{2}
\]

Or d’après la question précédente \(\lim_{p \to +\infty} \frac{W_{2p+1}}{W_{2p}} = \frac{1}{\lim_{p \to +\infty} \frac{W_{2p+1}}{W_{2p}}} = \frac{1}{1} \), par conséquent :

\[
\lim_{p \to +\infty} \frac{1}{p} \left(\frac{2p.(2p-2) \ldots 4.2}{(2p+1)(2p-1) \ldots 3.1} \right)^2 = (2 + 0).1 \frac{\pi}{2} = \pi
\]

5. D’après la deuxième question, la formule de Wallis peut aussi s’écrire \(\frac{\pi}{2} \left(\frac{\pi}{2} \right)^2 \pi = \frac{\pi}{2} \) et donc \(W_{2p} \sim \sqrt{\pi} = \frac{\pi}{2} \) car \(W_{2p} \geq 0 \). Or \(W_{2p+1} \sim W_{2p} \) d’après la troisième question d’où \(W_{2p} \sim W_{2p+2} = \frac{1}{2} \sqrt{\frac{2}{p}} \). Maintenant si \(n = 2p \) ou \(2p + 1 \), alors \(n \sim 2p \) donc \(p = \frac{n}{2} \) et par conséquent

\[
W_n \sim \frac{1}{2} \sqrt{\frac{2}{n(n/2)}} = \sqrt{\frac{n}{2n}} = \sqrt{\frac{n}{2n}}
\]

Exercice 5 :

1. On pose \(f(x) = x - \ln(1+x) \) pour tout \(x > -1 \). \(f \) est continue et dérivable car \(\ln \) l’est sur \([0, +\infty) \) et \(x > 1 \). On a \(f'(x) = 1 - \frac{1}{1+x} = \frac{x}{1+x} \) donc \(f \) est décroissante sur \(-1, 0 \) et croissante sur \([0, +\infty] \), en particulier \(f \) admet un minimum en \(x = 0 \) de \(f(0) = 0 - \ln(1) = 0 \). Pour tout \(x > 0 \), on a donc \(f(x) \geq 0 \) est à dire \(x \geq \ln(1+x) \).

2. Soit \(n \in \mathbb{N}^* \). Si \(t \in [0, \sqrt{n}] \) alors \(-\frac{t^2}{n} > -1 \) et \(\frac{t}{n} > 0 \) ce qui entraîne d’après la question précédente

\[
\ln \left(1 - \frac{t^2}{n} \right) \leq -\frac{t^2}{n} \quad \text{et} \quad \ln \left(1 + \frac{t^2}{n} \right) \geq \frac{t^2}{n}.
\]

En multipliant la seconde inégalité par \(-1 \) (ce qui renverse le sens) on obtient \(\ln \left(1 - \frac{t^2}{n} \right) \leq -\frac{t^2}{n} \leq -\ln \left(1 + \frac{t^2}{n} \right) \). Ensuite on multiplie cette inégalité par \(n \) (qui est positif car \(n \geq 1 \)), puis on compose par la fonction exponentielle (qui est croissante) et on arrive à :

\[
e^{n \ln(1-\frac{t^2}{n})} = \left(1 - \frac{t^2}{n} \right)^n \leq e^{-\frac{t^2}{n}} = e^{-\ln(1+\frac{t^2}{n})} = \left(1 + \frac{t^2}{n} \right)^{-n}
\]

pour tout \(t \in [0, \sqrt{n}] \).

Ce résultat est également vrai pour \(t = \sqrt{n} \). De plus \(t \mapsto \left(1 - \frac{t^2}{n} \right)^n \), \(t \mapsto e^{-t^2} \) et \(t \mapsto \left(1 + \frac{t^2}{n} \right)^n \) sont des fonctions continues sur \([0, \sqrt{n}]\) donc on peut intégrer ce résultat et on obtient :

\[
\int_0^{\sqrt{n}} \left(1 - \frac{t^2}{n} \right)^n dt \leq \int_0^{\sqrt{n}} e^{-t^2} dt = G(n) \leq \int_0^{\sqrt{n}} \left(1 + \frac{t^2}{n} \right)^{-n} dt
\]

3. On pose \(t = \sqrt{n} \cos(x) \) et donc \(dt = -\sqrt{n} \sin(x) \cos(x) dx = \sqrt{n} \sin(x) dx \). De plus, \(x = \arctan \left(\frac{\sqrt{n}}{2} \right) \) donc \(x = \frac{\pi}{2} \) si \(t = 0 \) (car \(t \geq 0 \) et \(\lim_{x \to +\infty} \arctan(x) = \frac{\pi}{2} \)) et \(x = \frac{\pi}{4} \) si \(t = \frac{\sqrt{n}}{2} \). Ainsi :

\[
\int_0^{\sqrt{n}} \left(1 + \frac{t^2}{n} \right)^{-n} dt = \int_0^{\pi/4} \left(1 + \frac{\cos^2(x)}{\sin^2(x)} \right)^{-n} \sqrt{n} \sin(x) dx
\]

\[
= \sqrt{n} \left(- \int_0^{\pi/4} \left(\sin^2(x) + 1 - \sin^2(x) \right)^{-n} \frac{dx}{\sin^2(x)} \right)
\]

\[
= \sqrt{n} \int_{\pi/4}^{\pi/2} \frac{dx}{\sin(2n \sin^2(x))} = \sqrt{n} \int_{\pi/4}^{\pi/2} \sin^{2n-2}(x) dx
\]

\[
\leq \sqrt{n} \int_{\pi/4}^{\pi/2} \sin^{2n-2}(x) dx = \sqrt{n} W_{2n-2} \quad \text{car} \quad \sin(x) \geq 0 \quad \text{pour} \quad x \in \left[0, \frac{\pi}{2} \right]
\]
4. On pose $t = \sqrt{n} \cos(x)$ et donc $dt = \sqrt{n} \sin(x) \, dx$. De plus, $x = \arccos\left(\frac{t}{\sqrt{n}}\right)$ donc $x = \frac{\pi}{2}$ si $t = 0$ et $x = 0$ si $t = \sqrt{n}$. Ainsi :

$$
\int_{0}^{\sqrt{n}} \left(1 - \frac{t^2}{n}\right)^n \, dt = \int_{\pi/2}^{0} \left(1 - \cos^2(x)\right)^n \sqrt{n} \sin(x) \, dx
$$

$$
= \sqrt{n} \left(- \int_{\pi/2}^{0} (1 - (1 - \sin^2(x)))^n \sin(x) \, dx \right)
$$

$$
= \sqrt{n} \int_{0}^{\pi/2} \sin^{2n}(x) \sin(x) \, dx = \sqrt{n} \int_{0}^{\pi/2} \sin^{2n+1}(x) \, dx = \sqrt{n} W_{2n+1}
$$

5. Finalement on a d’après les questions précédentes $\sqrt{n} W_{2n-2} \leq G(n) \leq \sqrt{n} W_{2n+1}$ pour tout $n \in \mathbb{N}^*$. Or d’après l’exercice précédent $W_{2n-2} \sim \sqrt{\frac{\pi}{2(2n-2)}} \sim \sqrt{\frac{\pi}{4n}}$ et $W_{2n+1} \sim \sqrt{\frac{\pi}{2(2n+1)}} \sim \sqrt{\frac{\pi}{4n}}$ ce qui entraîne que $\sqrt{n} W_{2n-2} \sim \sqrt{n} W_{2n+1} \sim \frac{\sqrt{\pi}}{2}$ et par conséquent $\lim_{n \to +\infty} \sqrt{n} W_{2n-2} = \lim_{n \to +\infty} \sqrt{n} W_{2n+1} = \frac{\sqrt{\pi}}{2}$. On en déduit d’après le théorème d’encadrement des limites que $\int_{0}^{+\infty} e^{-t^2} \, dt = G = \lim_{n \to +\infty} G(n) = \frac{\sqrt{\pi}}{2}$.