Construction de fractions rationnelles à dynamique prescrite

Sébastien Godillon

Université de Cergy-Pontoise

Soutenance de thèse - 12 mai 2010
Construction of rational maps with prescribed dynamics

Sébastien Godillon

Cergy-Pontoise University

Thesis defense - May 12, 2010
Field: Study of holomorphic dynamical systems

Motivation: Find some examples of rational maps with particular complicated dynamics

Questions: 1- How to construct rational maps from dynamical informations ?
2- Which kind of rational maps is it possible to construct ?

Main tools: Quasiconformal surgery and Thurston theory
Let $f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ be a rational map of degree $d \geq 2$.

For every $z_0 \in \hat{\mathbb{C}}$, consider its forward orbit $\{ z_n = f^n(z_0) \mid n \geq 1 \}$.

\[
\begin{array}{ccccccc}
Z_0 & \mapsto & Z_1 & \mapsto & Z_2 & \mapsto & Z_3 & \mapsto & \ldots
\end{array}
\]
Let $f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ be a rational map of degree $d \geq 2$.

For every $z_0 \in \hat{\mathbb{C}}$, consider its forward orbit $\{z_n = f^{\circ n}(z_0) / n \geq 1\}$.

\[
\begin{align*}
 z_0 & \mapsto z_1 & f \\
 z_1 & \mapsto z_2 & f \\
 z_2 & \mapsto z_3 & f \\
 & \cdots & & \ldots
\end{align*}
\]

Definition (Fatou and Julia sets)

- the Fatou set is

 \[\mathcal{F}(f) = \{ z_0 \in \hat{\mathbb{C}} / (f^{\circ n})_{n \geq 1} \text{ is a normal family at } z_0 \} \]

- the Julia set is

 \[\mathcal{J}(f) = \hat{\mathbb{C}} - \mathcal{F}(f) \]
Theorem

Let $f: \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}$ be a rational map of degree $d \geq 2$. $\mathcal{J}(f)$ is a nonempty fully invariant closed and perfect set. Furthermore either

- $\mathcal{J}(f)$ is connected,
- or else $\mathcal{J}(f)$ has uncountably many connected components.
Theorem

Let $f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ be a rational map of degree $d \geq 2$. $\mathcal{J}(f)$ is a nonempty fully invariant closed and perfect set. Furthermore either

- $\mathcal{J}(f)$ is connected,
- or else $\mathcal{J}(f)$ has uncountably many connected components.

Example

[Sébastien Godillon] Construction of rational maps with prescribed dynamics
Theorem

Let \(f : \hat{\mathbb{C}} \to \hat{\mathbb{C}} \) be a rational map of degree \(d \geq 2 \).
If there exists an attracting fixed point \(z_\infty \) of \(f \) such that every critical point of \(f \) lies in the immediate attracting basin of \(z_\infty \) then

\[
\exists \text{ a homeomorphism } \phi /
\]

\[
\begin{align*}
\mathcal{J}(f) & \xrightarrow{f} \mathcal{J}(f) \\
\downarrow \phi & \quad \downarrow \phi \\
\Sigma_d & \xrightarrow{\sigma} \Sigma_d
\end{align*}
\]

where

- \(\Sigma_d = \{1, 2, \ldots, d\}^\mathbb{N} \) is a Cantor set
- \(\varepsilon = (\varepsilon_0 \varepsilon_1 \varepsilon_2 \ldots) \mapsto \sigma(\varepsilon) = (\varepsilon_1 \varepsilon_2 \varepsilon_3 \ldots) \) is the shift map
Example (McMullen)
Example (McMullen)

Theorem

\[f_{CoC} \text{ acts on } \mathcal{J}_{CoC} = \{J \text{ Julia component of } \mathcal{J}(f_{CoC})\} \approx \bigcup_{\alpha \in \Sigma_2} C_\alpha. \]

\[\exists \text{ a homeomorphism } \phi/ \]

\[\mathcal{J}_{CoC} \xrightarrow{f_{CoC}} \mathcal{J}_{CoC} \]

\[\Sigma_2 \xrightarrow{\sigma} \Sigma_2 \]

\[\mathcal{J}_{CoC} \xrightarrow{f_{CoC}} \mathcal{J}_{CoC} \]

\[\phi \]

\[\Sigma_2 \xrightarrow{\sigma} \Sigma_2 \]

\[\phi \]

Sébastien Godillon

Construction of rational maps with prescribed dynamics
Example (McMullen)
Introduction
From a tree to a Persian carpet
A collection of Persian carpets

Example (McMullen)
Example (McMullen)
Example (McMullen)
Theorem

\[\exists \textit{ a homeomorphism } \varphi / \]

\[\mathcal{J}_{\text{CoC}} \xrightarrow{f_{\text{CoC}}} \mathcal{J}_{\text{CoC}} \]

\[\varphi \downarrow \downarrow \]

\[\mathcal{J}_{\text{C}} \xrightarrow{\tau_{\text{C}}} \mathcal{J}_{\text{C}} \]

where

- \(\tau_{\text{C}} : [0, 1] \rightarrow [0, 1], x \mapsto \begin{cases}
3x & \text{if } x \in [0, \frac{1}{2}] \\
3(1 - x) & \text{if } x \in [\frac{1}{2}, 1]
\end{cases} \)

- and \(\mathcal{J}_{\text{C}} = \{ x \in [0, 1] / \forall n \geq 0, \tau_{\text{C}}^n(x) \in [0, \frac{1}{3}] \cup [\frac{2}{3}, 1] \} \)
Consider $P_c : z \mapsto z^2 + c$ where $c \approx -0.157\ldots + 1.032\ldots i$

Let \mathcal{J}_H be the intersection between $\mathcal{J}(P_c)$ and the Hubbard tree \mathcal{H}
Theorem (Persian carpet)

There exists a rational map $f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ such that

\[
\exists \text{ a homeomorphism } \varphi / \quad \mathcal{J}_H(f) \xrightarrow{f} \mathcal{J}_H(f)
\]

where $\mathcal{J}_H(f)$ is a subset of Julia components of f.

Moreover,

- there exists only one fixed Julia component J_α
- $\forall J \in \mathcal{J}_H(f) - \bigcup_{n \geq 0} (f^n)^{-1}(J_\alpha)$, J is a Jordan curve
Figure: A Persian carpet
Consider the following abstract Hubbard tree $\mathcal{H} = (T, \tau)$.
Introduction
From a tree to a Persian carpet
A collection of Persian carpets

A Hubbard tree
Unfolding
Quasiconformal surgery

Sébastien Godillon
Construction of rational maps with prescribed dynamics
We equip the Hubbard tree H with a weight function w.

![Hubbard tree diagram]
We equip the Hubbard tree \mathcal{H} with a weight function w.

Fact (the weighted Hubbard tree (\mathcal{H}, w) is unobstructed)

$$
\begin{align*}
\tau(e_{\alpha,c_0}) &= e_{\alpha,c_1} \\
\tau(e_{\alpha,c_1}) &= e_{\alpha,c_2} \\
\tau(e_{\alpha,c_2}) &= e_{\alpha,c_0} \cup e_{c_0,c_3} \\
\tau(e_{c_0,c_3}) &= e_{\alpha,c_1} \cup e_{\alpha,c_0}
\end{align*}
$$

gives

$$
M = \begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & \frac{1}{2} & 0 \\
\frac{1}{2} & 0 & 0 & \frac{1}{2} \\
1 & 1 & 0 & 0
\end{pmatrix}
$$

with

$$
\lambda(\mathcal{H}) := \lambda(M) \approx 0.918 < 1
$$
Construction of rational maps with prescribed dynamics
Introduction
From a tree to a Persian carpet
A collection of Persian carpets
A Hubbard tree
Unfolding
Quasiconformal surgery

Sébastien Godillon
Construction of rational maps with prescribed dynamics
Question: How to construct a rational map $f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ “encoded” by the unobstructed weighted Hubbard tree (\mathcal{H}, w)?
Question: How to construct a rational map $f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ “encoded” by the unobstructed weighted Hubbard tree (\mathcal{H}, w) ?

Answer: By quasiconformal surgery!
Introduction

From a tree to a Persian carpet
A collection of Persian carpets

A Hubbard tree
Unfolding
Quasiconformal surgery

Sébastien Godillon
Construction of rational maps with prescribed dynamics
A Hubbard tree
Unfolding
Quasiconformal surgery

\[
\begin{align*}
&c_1 \xrightarrow{2} c_2 \xrightarrow{2} c_3 \\
&1 \xleftarrow{1}
\end{align*}
\]
\[c_1 = 1 \xrightarrow{2} c_2 = \infty \xrightarrow{2} c_3 = 0 \]

\[\hat{f} = (z \mapsto z^2) \circ \left(z \mapsto \frac{1}{1-z} \right) = \left(z \mapsto \frac{1}{(1-z)^2} \right) \]
From a tree to a Persian carpet
A collection of Persian carpets

Introduction

A Hubbard tree
Unfolding
Quasiconformal surgery

\[c_1 = 1 \xrightarrow{2} c_2 = \infty \xrightarrow{2} c_3 = 0 \]

\[\hat{f} = (z \mapsto z^2) \circ \left(z \mapsto \frac{1}{1-z} \right) = \left(z \mapsto \frac{1}{(1-z)^2} \right) \]
Step 1 - Cutting off

Lemma (equipotentials layout)

Given any positive constant $C > 0$, there exist five equipotentials $\beta_0, \beta_1, \beta_2, \gamma_-3$ and γ_+3 such that

(i) $\beta_0 \subset B(0)$, $\beta_1 \subset B(1)$ and $\beta_2 \subset B(2)$

(ii) $\gamma_-3, \gamma_+3 \subset B(0)$ and $|\phi_0(\beta_0)| > |\phi_0(\gamma_-3)| > |\phi_0(\gamma_+3)|$

(iii) the following inequalities hold

\[
\begin{aligned}
\mod(\alpha_1, \beta_1) &< \mod(\alpha_0, \beta_0) \\
\frac{1}{2} \mod(\alpha_2, \beta_2) &< \mod(\alpha_1, \beta_1) \\
\frac{1}{2} \mod(\alpha_0, \beta_0) + \frac{1}{2} \mod(\gamma_-3, \gamma_+3) &< \mod(\alpha_2, \beta_2) \\
\mod(\alpha_0, \beta_0) + \mod(\alpha_1, \beta_1) + C &< \mod(\gamma_-3, \gamma_+3)
\end{aligned}
\]

(1)

\[
\frac{1}{2} \mod(\alpha_0, \gamma_+3) < \mod(\alpha_2, \beta_2)
\]

(2)
Introduction
From a tree to a Persian carpet
A collection of Persian carpets

A Hubbard tree
Unfolding
Quasiconformal surgery

Construction of rational maps with prescribed dynamics
Sketch of proof for equipotentials layout Lemma.

Compare

\[
\begin{align*}
\text{mod}(\alpha_1, \beta_1) &< \text{mod}(\alpha_0, \beta_0) \\
\frac{1}{2} \text{mod}(\alpha_2, \beta_2) &< \text{mod}(\alpha_1, \beta_1) \\
\frac{1}{2} \text{mod}(\alpha_0, \beta_0) + \frac{1}{2} \text{mod}(\gamma_{-3}, \gamma_{+3}) &< \text{mod}(\alpha_2, \beta_2) \\
\text{mod}(\alpha_0, \beta_0) + \text{mod}(\alpha_1, \beta_1) + C &< \text{mod}(\gamma_{-3}, \gamma_{+3})
\end{align*}
\]

(1)

with

\[
M = \begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & \frac{1}{2} & 0 \\
\frac{1}{2} & 0 & 0 & \frac{1}{2} \\
1 & 1 & 0 & 0
\end{pmatrix}
\]

Furthermore \(\lambda(M) < 1\) implies \(\exists x \in \mathbb{R}^4 \mid x > 0\) and \(Mx < x\)
Step 2 - The branching piece

Define

\[F_{|\hat{\mathbb{C}} - D(0,\beta_0',1)} = \hat{f}_{|\hat{\mathbb{C}} - D(0,\beta_0',1)} \]
Step 3 - Preimage of the branching piece

Lemma (inverse Grötzsch’s inequality - Cui Guizhen and Tan Lei)

\[\exists C > 0 \land \forall \beta_0, \beta_1, \text{mod}(\beta_1, \beta_0) < \text{mod}(\alpha_0, \beta_0) + \text{mod}(\alpha_1, \beta_1) + C \]

\[(1) \Rightarrow \text{mod}(\alpha_0, \beta_0) + \text{mod}(\alpha_1, \beta_1) + C < \text{mod}(\gamma_3, \gamma_3) \]
Step 3 - Preimage of the branching piece

Lemma (inverse Grötzsch’s inequality - Cui Guizhen and Tan Lei)

\[\exists C > 0 / \forall \beta_0, \beta_1, \text{mod}(\beta_1, \beta_0) < \text{mod}(\alpha_0, \beta_0) + \text{mod}(\alpha_1, \beta_1) + C \]

\[\exists \beta'_{-3,1}, \beta'_{+3,0} \subset A(\gamma_{-3}, \gamma_{+3}) / \text{mod}(\beta'_{-3,1}, \beta'_{+3,0}) = \text{mod}(\beta_1, \beta_0) \]
Define F on $A(\beta'_1, \beta'_0)$ to be a biholomorphic map such that

- F maps $A(\beta'_{-3}, \beta'_{+3})$ onto $A(\beta_1, \beta_0)$
- F extends diffeomorphically to $\overline{A(\beta'_1, \beta'_0)}$ mapping β'_{-3} onto β_1 and β'_{+3} onto β_0
Step 4 - Folding

Define

\[F|_{A(\beta_0, \gamma_{-3})} = \psi \circ (z \mapsto z + \frac{1}{z}) \circ \varphi \]
Extends quasiregularly F on $\overline{A(\beta'_{0,1}, \beta_0)} \cup \overline{A(\gamma_{-3}, \beta'_{-3,1})}$
Step 5 - End with an end
Let $\delta'_{+3,-3} \subset A(\beta_{+3,0}, \gamma_{+3})$ be a smooth curve.
Define F on $D(\delta'_{+3,-3})$ to be a biholomorphic map such that
- F maps $D(\delta'_{+3,-3})$ onto $D(0, \gamma_{-3})$
- F extends diffeomorphically to $D(\delta'_{+3,-3})$
 mapping $\delta'_{+3,-3}$ onto γ_{-3}
Define F on $D(0, \gamma_{+3})$ to be any biholomorphic map such that

- F maps $D(0, \gamma_{+3})$ onto $D(p, \zeta) \subset A(\beta_0, \gamma_{-3})$ with $F(0) = p$
- F extends diffeomorphically to $D(0, \gamma_{+3})$
- mapping γ_{+3} onto ζ

Extends quasiregularly F on $P(\beta'_{+3,0}, \delta'_{+3,-3}, \gamma_{+3})$
Final Step

- F is holomorphic on an open set $H \subset \hat{\mathbb{C}}$

 $$H = \left(\hat{\mathbb{C}} - D(0, \beta'_{0,1}) \right) \bigcup A(\beta'_{-3,1}, \beta'_{+3,0}) \bigcup A(\beta_0, \gamma_{-3})$$

 - Step 2
 - Step 3
 - Step 4

 $$\bigcup D(\delta'_{+3,-3}) \cup D(0, \gamma_{+3})$$

 - Step 5

- F extends quasiregularly to the complement $Q = \hat{\mathbb{C}} - H$

 $$Q = A(\beta'_{0,1}, \beta_0) \cup A(\gamma_{-3}, \beta'_{-3,1}) \bigcup P(\beta'_{+3,0}, \delta'_{+3,-3}, \gamma_{+3})$$

 - Step 4
 - Step 5

- \exists an open set $A \subset H$ such that $F(A) \subset A$ and $F^\circ 2(Q) \subset A$

 $$A = A(\beta_0, \gamma_{-3}) \cup D(1, \beta_1) \cup D(\infty, \beta_2) \cup D(0, \gamma_{+3})$$
Quasiconformal surgery principle: We may apply Morrey-Ahlfors-Bers theorem to get

\[\exists \text{ a quasiconformal map } \phi \text{ with } F\text{-invariant dilatation} \]

Therefore \(f = \phi \circ F \circ \phi^{-1} \) is a rational map.
From a tree to a Persian carpet
A collection of Persian carpets

Unfolding
Quasiconformal surgery

Sébastien Godillon
Construction of rational maps with prescribed dynamics
This ramification portrait is realized by \(\hat{f} = \left(z \mapsto \frac{1}{(1 - z)^2} \right) \)
Question: Which kind of ramification portraits is realized by post-critically finite rational maps?
Question: Which kind of ramification portraits is realized by post-critically finite rational maps?

Answer: The Thurston’s topological characterization!
Theorem (Thurton’s topological characterization)

Let \(f : \mathbb{S}^2 \to \mathbb{S}^2 \) be a ramified covering with \(|P_f| < \infty\).

Then there exists a rational map \(\hat{f} : \hat{\mathbb{C}} \to \hat{\mathbb{C}} \) such that

\[
\exists \varphi_0, \varphi_1 \text{ homeomorphisms} / \begin{cases}
(i) & \mathbb{S}^2 \overset{\varphi_1}{\longrightarrow} \hat{\mathbb{C}} \\
(ii) & \mathbb{S}^2 \overset{\varphi_0}{\longrightarrow} \hat{\mathbb{C}} \\
(iii) & \varphi_0(P_f) = \varphi_1(P_f) = \hat{P_f} \\
\end{cases}
\]

if and only if \(f \) has no Thurston obstruction.
Topological part

Definition \((N\text{-cyclic ramification portrait of polynomial type})\)

A ramification portrait \(\mathcal{R} = (\Omega, P, \sigma, \nu)\) is \(N\text{-cyclic ramification portrait of polynomial type}\) if

- \(\mathcal{R}\) is branch compatible: \(\forall y \in P, \sum_{\sigma(x) = y} \nu(x) \leq \deg(\mathcal{R})\)
- \(\exists \infty \in \Omega \cup P / \sigma(\infty) = \infty\) and \(\nu(\infty) = \deg(\mathcal{R})\)
- \(\forall \omega \in \Omega - \{\infty\}, \omega\) is \(\sigma\)-periodic
- \(P - \{\infty\}\) is the union of exactly \(N\) disjoint periodic cycles
Topological part

Definition \((N\)-cyclic ramification portrait of polynomial type)\)

A ramification portrait \(\mathcal{R} = (\Omega, P, \sigma, \nu)\) is **\(N\)-cyclic ramification portrait of polynomial type** if

- \(\mathcal{R}\) is branch compatible: \(\forall y \in P, \sum_{\sigma(x) = y} \nu(x) \leq \deg(\mathcal{R})\)
- \(\exists \infty \in \Omega \cup P / \sigma(\infty) = \infty\) and \(\nu(\infty) = \deg(\mathcal{R})\)
- \(\forall \omega \in \Omega - \{\infty\}, \omega\) is \(\sigma\)-periodic
- \(P - \{\infty\}\) is the union of exactly \(N\) disjoint periodic cycles

Theorem (topological realization)

Every \(N\)-cyclic ramification portrait of polynomial type is realized by a ramified covering \(f : S^2 \rightarrow S^2\).
Sketch of proof for topological realization.

S_1

f

S_2
Analytical part

Theorem (polynomial criterion)

If a topological polynomial f has a Thurston obstruction then

(i) f has a Levy cycle Γ contained in the Thurston obstruction

(ii) there exist some post-critical points of f whose iterations do not accumulate a critical point
Analytical part

Theorem (polynomial criterion)

If a topological polynomial f has a Thurston obstruction then

(i) f has a Levy cycle Γ contained in the Thurston obstruction

(ii) there exist some post-critical points of f whose iterations do not accumulate a critical point

Corollary (Levy’s criterion)

Let $f : S^2 \to S^2$ be a topological polynomial with $|P_f| < \infty$

If every critical point falls into a periodic cycle containing a critical point then f has no Thurston obstruction.
Analytical part

Theorem (polynomial criterion)

If a topological polynomial f has a Thurston obstruction then

(i) f has a Levy cycle Γ contained in the Thurston obstruction

(ii) there exist some post-critical points of f whose iterations do not accumulate a critical point

Corollary (Levy’s criterion)

Let $f : \mathbb{S}^2 \to \mathbb{S}^2$ be a topological polynomial with $\left| P_f \right| < \infty$
If every critical point falls into a periodic cycle containing a critical point then f has no Thurston obstruction.

Corollary (analytical realization)

Every N-cyclic ramification portrait of polynomial type is realized by a polynomial $\hat{f} : \mathbb{S}^2 \to \mathbb{S}^2$.
Let \hat{R} be a N-cyclic ramification portrait of polynomial type.

\[
\begin{align*}
\hat{\nu}(c_1^1) & \quad \hat{\nu}(c_1^2) & \quad \hat{\nu}(c_1^{n_1-1}) \\
\hat{\nu}(c_2^1) & \quad \hat{\nu}(c_2^2) & \quad \hat{\nu}(c_2^{n_2-1}) \\
\hat{\nu}(c_3^1) & \quad \hat{\nu}(c_3^2) & \quad \hat{\nu}(c_3^{n_3-1}) \\
\vdots & \quad \vdots & \quad \vdots \\
\hat{\nu}(c_N^1) & \quad \hat{\nu}(c_N^2) & \quad \hat{\nu}(c_N^{n_N-1}) \\
\hat{\nu}(c_\infty) & \quad \deg(\hat{R})
\end{align*}
\]
Let \hat{R} be a N-cyclic ramification portrait of polynomial type.

\[
\begin{align*}
&c_1^1 \quad \hat{\nu}(c_1^1) \quad c_2^1 \quad \hat{\nu}(c_2^1) \quad \cdots \quad \hat{\nu}(c_{n_1-1}^1) \quad c_{n_1}^1 \\
&\quad \quad \quad \quad \hat{\nu}(c_{n_1}^1) \\
&c_1^2 \quad \hat{\nu}(c_1^2) \quad c_2^2 \quad \hat{\nu}(c_2^2) \quad \cdots \quad \hat{\nu}(c_{n_2-1}^2) \quad c_{n_2}^2 \\
&\quad \quad \quad \quad \hat{\nu}(c_{n_2}^2) \\
&\vdots & & \vdots \\
&c_1^N \quad \hat{\nu}(c_1^N) \quad c_2^N \quad \hat{\nu}(c_2^N) \quad \cdots \quad \hat{\nu}(c_{n_N-1}^N) \quad c_{n_N}^N \\
&\quad \quad \quad \quad \hat{\nu}(c_{n_N}^N) \\
&c_1^{N+1} \quad \hat{\nu}(c_1^{N+1}) \quad c_2^{N+1} \quad \hat{\nu}(c_2^{N+1}) \quad \cdots \quad \hat{\nu}(c_{n_{N+1}-1}^{N+1}) \quad c_{n_{N+1}}^{N+1} \\
&\quad \quad \quad \quad \hat{\nu}(c_{n_{N+1}}^{N+1})
\end{align*}
\]
Let \mathcal{R} be the following ramification portrait.

\[\begin{array}{c}
\nu(p_1) \rightarrow \hat{\nu}(c_1^1) \rightarrow \ldots \rightarrow \hat{\nu}(c_{n_1}^1) \\
p_1 \quad \vdots \quad p_1' \quad \vdots \quad \vdots \quad \vdots
\end{array}\]

\[\begin{array}{c}
\nu(c_{n_1}^1) \\
\vdots \\
\nu(c_{n_m}^m)
\end{array}\]

\[\begin{array}{c}
p_m \nu(p_m) = \hat{\nu}(c_m^m) \rightarrow \hat{\nu}(c_{n_m}^m) \\
p_m \quad \vdots \quad p_m' \quad \vdots \quad \vdots \quad \vdots
\end{array}\]

\[\begin{array}{c}
\nu(c_{n_m}^m) \\
\vdots \\
\nu(c_{n_{m+1}}^{m+1})
\end{array}\]

\[\begin{array}{c}
c_1^{m+1} \rightarrow \ldots \rightarrow \hat{\nu}(c_{n_{m+1}}^{m+1}) \\
c_1^{m+1} \quad \vdots \quad c_1^{m+1} \quad \vdots \quad \vdots \quad \vdots
\end{array}\]

\[\begin{array}{c}
\hat{\nu}(c_{n_{m+1}}^{m+1}) \\
\vdots \\
\hat{\nu}(c_{n_{N+1}}^{N+1})
\end{array}\]

\[\begin{array}{c}
c_1^{N+1} \rightarrow \ldots \rightarrow \hat{\nu}(c_{n_{N+1}}^{N+1}) \\
c_1^{N+1} \quad \vdots \quad c_1^{N+1} \quad \vdots \quad \vdots \quad \vdots
\end{array}\]

\[\begin{array}{c}
\hat{\nu}(c_{n_{N+1}}^{N+1}) \\
\vdots \\
\hat{\nu}(c_{n_{N+1}}^{N+1})
\end{array}\]
Definition (admissible weighted Hubbard tree)

Such a ramification portrait \mathcal{R} may be deduced from a weighted Hubbard tree (\mathcal{H}, w) such that

- **tree shape condition:**
 \mathcal{H} is a starlike tree around an unique branched point α, every p_i is the endpoint of two exactly two edges and every c_k^i is an end

- **realization condition:**
 the associated sub-ramification portrait $\hat{\mathcal{R}}$ is a N-cyclic ramification portrait of polynomial type

- **Thurston condition:**
 (\mathcal{H}, w) is unobstructed
Theorem (realization of admissible weighted Hubbard tree)

For every admissible weighted Hubbard tree \((\mathcal{H}, w)\)
there exists a rational map \(f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}\) such that

(i) \(f\) realizes the associated ramification portrait \(\mathcal{R}\)

(ii) the Julia set \(\mathcal{J}(f)\) is disconnected
Sketch of the proof.

First idea: Folding

![Diagram showing a mathematical proof concept with symbols and notation describing the folding process.](image)
Sketch of the proof.

First idea: Folding

Second idea: Final Step
Use a result of Cui Guizhen and Tan Lei generalizing the Thurston’s theorem for some non-post-critically finite maps.
Figure: Different motifs of Persian carpets
Figure: Different motifs of Persian carpets
Introduction
From a tree to a Persian carpet
A collection of Persian carpets

Figure: Different motifs of Persian carpets
• Enlarge the **tree shape condition** and the **realization condition**.
• Encode the exchanging dynamics of Julia components.
• Extends continuously the encoding map $\pi : \mathcal{J}_\mathcal{H} \rightarrow \mathcal{H}$ to $\hat{\mathbb{C}}$.
- Enlarge the tree shape condition and the realization condition.
- Encode the exchanging dynamics of Julia components.
- Extends continuously the encoding map $\pi : \mathcal{J}_\mathcal{H} \to \mathcal{H}$ to $\hat{\mathbb{C}}$.

And more generally,
- What about the unicity?
- What about the converse problem?
Merci de votre attention !