Wandering under Bishop’s trees

Sébastien Godillon
Plan

Bishop’s construction 1: Motivation and main results

Bishop’s construction 2: Sketch of the proof by quasiconformal foldings

Existence and non-existence of wandering domains for entire functions

Examples of wandering domains in Eremenko-Lyubich’s class
Wandering under Bishop’s trees

Bishop’s construction 1: Motivation and main results

Sébastien Godillon
Let $f : \mathbb{C} \to \mathbb{C}$ be a transcendental entire function with
- exactly two critical values, say -1 and $+1$
- no finite asymptotic values

Question: What does f “look like”??
$T = f^{-1}([-1, +1])$ is an infinite bipartite tree.
\[T = f^{-1}([-1, +1]) \] is an infinite bipartite tree.

\[\cosh: \mathbb{H}_r \to \mathbb{C}\setminus[-1, +1] \] is a universal cover.
$T = f^{-1}([-1, +1])$ is an infinite bipartite tree.

$\forall \Omega$ c.c. of $\mathbb{C} \setminus T$, $\tau|_{\Omega} = (\cosh^{-1} \circ f|_{\Omega}) : \Omega \to \mathbb{H}_r$ is conformal.
Conversely: How to construct f from (T, τ)?
Conversely: How to construct f from (T, τ)?

More precisely, given
- an infinite bipartite tree $T \subset \mathbb{C}$ with “smooth” enough geometry
- a map τ such that $\tau|_{\Omega} : \Omega \to \mathbb{H}_r$ is conformal, $\forall \Omega$ c.c. of $\mathbb{C} \setminus T$

does there exist an entire function $f : \mathbb{C} \to \mathbb{C}$ such that $f = \cosh \circ \tau$?
Conversely: How to construct f from (T, τ)?

More precisely, given
- an infinite bipartite tree $T \subset \mathbb{C}$ with “smooth” enough geometry
- a map τ such that $\tau|_{\Omega} : \Omega \rightarrow \mathbb{H}_r$ is conformal, $\forall \Omega$ c.c. of $\mathbb{C}\setminus T$

does there exist an entire function $f : \mathbb{C} \rightarrow \mathbb{C}$ such that $f = \cosh \circ \tau$?

Main problem: $\cosh \circ \tau$ is not continuous across T in general.
Solution: Modify \((T, \tau)\) in a small neighborhood \(T(r_0)\) of \(T\).
Solution: Modify \((T, \tau)\) in a small neighborhood \(T(r_0)\) of \(T\).

More precisely, replace \((T, \tau)\) by \((T', \eta)\) such that

- \(T \subset T' \subset T(r_0)\)
- \(\eta = \tau\) off \(T(r_0)\)
- \(\eta|_{\Omega'} : \Omega' \to \mathbb{H}_r\) is \(K\)-quasiconformal, \(\forall \Omega'\) c.c. of \(\mathbb{C} \setminus T'\)
- \(\cosh \circ \eta\) continuously extends across \(T'\)
Solution: Modify \((T, \tau)\) in a small neighborhood \(T(r_0)\) of \(T\).

More precisely, replace \((T, \tau)\) by \((T', \eta)\) such that

- \(T \subset T' \subset T(r_0)\)
- \(\eta = \tau\) off \(T(r_0)\)
- \(\eta|_{\Omega'} : \Omega' \to \mathbb{H}_r\) is \(K\)-quasiconformal, \(\forall \Omega'\) c.c. of \(\mathbb{C} \setminus T'\)
- \(\cosh \circ \eta\) continuously extends across \(T'\)

Then apply Morrey-Ahlfors-Bers measurable Riemann mapping theorem:

\[\exists\ \text{an entire function } f \text{ and a quasiconformal map } \phi \text{ such that } f \circ \phi = \cosh \circ \tau \text{ off } T(r_0) \]
Solution: Modify \((T, \tau)\) in a small neighborhood \(T(r_0)\) of \(T\).

More precisely, replace \((T, \tau)\) by \((T', \eta)\) such that

- \(T \subset T' \subset T(r_0)\)
- \(\eta = \tau\) off \(T(r_0)\)
- \(\eta|_{\Omega'} : \Omega' \to \mathbb{H}_r\) is \(K\)-quasiconformal, \(\forall \Omega'\) c.c. of \(\mathbb{C} \setminus T'\)
- \(\cosh \circ \eta\) continuously extends across \(T'\)

Then apply measurable Riemann mapping theorem:

\[\exists\ \text{an entire function } f \text{ and a quasiconformal map } \phi \text{ such that} \]
\[f \circ \phi = \cosh \circ \tau \text{ off } T(r_0)\]
The neighborhood of T

$\forall r > 0$, define an open neighborhood of T as follows

$$T(r) = \bigcup_{e \text{ edge of } T} \left\{ z \in \mathbb{C} / \text{dist}(z, e) < r \text{ diam}(e) \right\}$$
Lemma 0

If T has bounded geometry, namely $\exists M > 0$ such that

1. edges of T are C^2 with uniform bounds
2. angles between adjacent edges are uniformly bounded away from 0
3. $\forall e, f$ adjacent edges, $\frac{1}{M} \leq \frac{\text{diam}(e)}{\text{diam}(f)} \leq M$
4. $\forall e, f$ non-adjacent edges, $\frac{\text{diam}(e)}{\text{dist}(e,f)} \leq M$

then $\exists r_0 > 0$ such that

$\forall \Omega \text{ c.c. of } \mathbb{C} \setminus T, \forall \text{ square } Q \subset \mathbb{H}_r \text{ that has a } \tau|_\Omega \text{-edge as one side,}$

$Q \subset \tau|_\Omega \left(T(r_0) \cap \Omega \right)$
Lemma 0

If T has bounded geometry, then $\exists r_0 > 0$ such that

$$\forall \Omega \text{ c.c. of } \mathbb{C}\backslash T, \forall \text{ square } Q \subset \mathbb{H}_r \text{ that has a } \tau|_\Omega\text{-edge as one side, } Q \subset \tau|_\Omega \left(T(r_0) \cap \Omega \right)$$
Theorem 1 (Bishop 2012)

If \((T, \tau)\) satisfies the following conditions

1. \(T\) has bounded geometry
2. every edge has \(\tau\)-size \(\geq \pi\)

then \(\exists\) an entire function \(f\) and a quasiconformal map \(\phi\) such that

\[f \circ \phi = \cosh \circ \tau \text{ off } T(r_0) \]

Moreover

- \(f\) has exactly two critical values, \(-1\) and \(+1\)
- \(f\) has no finite asymptotic values
- \(\phi(T) \subset f^{-1}([-1, +1]) \) \((= \phi(T'))\)
- \(\forall c\) critical point of \(f\), \(\deg_{loc}(c, f) = \deg(c, \phi(T'))\)
Generalization: Can we construct f with
- more critical values than only -1 and $+1$?
- some finite asymptotic values?
- arbitrary high degree critical points?
Solution: Let T be an infinite bipartite graph.
Solution: Let T be an infinite bipartite graph.

The c.c. of $\mathbb{C} \setminus T$ are sorted in three different types:

- **R-components:** $\tau|_{\Omega}: \Omega \rightarrow \mathbb{H}_r$ conformally
- **D-components:** $\tau|_{\Omega}: \Omega \rightarrow \mathbb{D}$ conformally
- **L-components:** $\tau|_{\Omega}: \Omega \rightarrow \mathbb{H}_\ell$ conformally

where $\rho_{\Omega}: D \rightarrow D$ is quasiconformal with $\rho_{\Omega}(z) = z$, $\forall z \in \partial D$.
Solution: Let T be an infinite bipartite graph.

The c.c. of $\mathbb{C} \setminus T$ are sorted in three different types:

- **R-components:** $\tau|_{\Omega}: \Omega \rightarrow \mathbb{H}_r$ conformally
- **D-components:** $\tau|_{\Omega}: \Omega \rightarrow \mathbb{D}$ conformally
- **L-components:** $\tau|_{\Omega}: \Omega \rightarrow \mathbb{H}_\ell$ conformally

More precisely:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>Ω</td>
<td>\mathbb{H}_r</td>
</tr>
<tr>
<td>D</td>
<td>Ω</td>
<td>\mathbb{D}</td>
</tr>
<tr>
<td>L</td>
<td>Ω</td>
<td>\mathbb{H}_ℓ</td>
</tr>
</tbody>
</table>
Solution: Let T be an infinite bipartite graph.

The c.c. of $\mathbb{C} \setminus T$ are sorted in three different types:

- **R-components:** $\tau|_\Omega : \Omega \to \mathbb{H}_r$ conformally
- **D-components:** $\tau|_\Omega : \Omega \to \mathbb{D}$ conformally
- **L-components:** $\tau|_\Omega : \Omega \to \mathbb{H}_\ell$ conformally

More precisely:

<table>
<thead>
<tr>
<th></th>
<th>Ω</th>
<th>\mathbb{H}_r</th>
<th>$\mathbb{C} \setminus [-1, +1]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>$\tau</td>
<td>_\Omega$</td>
<td>\cosh</td>
</tr>
</tbody>
</table>
Solution: Let T be an infinite bipartite **graph**.

The c.c. of $\mathbb{C} \setminus T$ are sorted in three different types:

- **R-components:** $\tau|_{\Omega} : \Omega \to \mathbb{H}_r$ conformally
- **D-components:** $\tau|_{\Omega} : \Omega \to \mathbb{D}$ conformally
- **L-components:** $\tau|_{\Omega} : \Omega \to \mathbb{H}_\ell$ conformally

More precisely:

| | \(\Omega \) | $\tau|_{\Omega}$ | \mathbb{H}_r | $cosh$ | $\mathbb{C}\setminus[-1, +1]$ |
|---|---|---|---|---|---|
| **R** | | | | | |
| **D** | \((\Omega, \star)\) | $\tau|_{\Omega}$ | \((\mathbb{D}, 0)\) | | |
| **L** | \(\Omega \) | $\tau|_{\Omega}$ | \mathbb{H}_ℓ | | |
Solution: Let T be an infinite bipartite graph.

The c.c. of $\mathbb{C}\backslash T$ are sorted in three different types:

- **R-components:** $\tau|_{\Omega}: \Omega \to \mathbb{H}_r$ conformally
- **D-components:** $\tau|_{\Omega}: \Omega \to \mathbb{D}$ conformally
- **L-components:** $\tau|_{\Omega}: \Omega \to \mathbb{H}_\ell$ conformally

More precisely:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>Ω</td>
<td>$\tfrac{\tau</td>
<td>_{\Omega}}{}$</td>
</tr>
<tr>
<td>D</td>
<td>(Ω, \star)</td>
<td>$\tfrac{\tau</td>
<td>_{\Omega}}{}$</td>
</tr>
<tr>
<td>L</td>
<td>Ω</td>
<td>$\tfrac{\tau</td>
<td>_{\Omega}}{}$</td>
</tr>
</tbody>
</table>
Solution: Let T be an infinite bipartite graph.

The c.c. of $\mathbb{C} \setminus T$ are sorted in three different types:

- **R-components:** $\tau|_{\Omega} : \Omega \to \mathbb{H}_r$ conformally
- **D-components:** $\tau|_{\Omega} : \Omega \to \mathbb{D}$ conformally
- **L-components:** $\tau|_{\Omega} : \Omega \to \mathbb{H}_\ell$ conformally

More precisely:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>Ω</td>
<td>$\xrightarrow{\tau</td>
<td>_{\Omega}}$</td>
</tr>
<tr>
<td>D</td>
<td>(Ω, \star)</td>
<td>$\xrightarrow{\tau</td>
<td>_{\Omega}}$</td>
</tr>
<tr>
<td>L</td>
<td>(Ω, ∞)</td>
<td>$\xrightarrow{\tau</td>
<td>_{\Omega}}$</td>
</tr>
</tbody>
</table>
Solution: Let T be an infinite bipartite graph.

The c.c. of $\mathbb{C}\setminus T$ are sorted in three different types:

- **R-components:** $\tau|_{\Omega}: \Omega \to \mathbb{H}_r$ conformally
- **D-components:** $\tau|_{\Omega}: \Omega \to \mathbb{D}$ conformally
- **L-components:** $\tau|_{\Omega}: \Omega \to \mathbb{H}_\ell$ conformally

More precisely:

| | Ω | $\tau|_{\Omega}$ | \mathbb{H}_r | \cosh | $\mathbb{C}\setminus[-1, +1]$ |
|---|---------|-----------------|--------------|--------|-------------------------------|
| **R** | | | | | |
| **D** | (Ω, \star) | $\tau|_{\Omega}$ | $(\mathbb{D}, 0)$ | $z \mapsto z^{d_\Omega}$ | $(\mathbb{D}, 0)$ |
| **L** | (Ω, ∞) | $\tau|_{\Omega}$ | $(\mathbb{H}_\ell, -\infty)$ | \exp | $(\mathbb{D}, 0)$ |
Solution: Let T be an infinite bipartite graph.

The c.c. of $\mathbb{C}\setminus T$ are sorted in three different types:

R-components: $\tau|_{\Omega}: \Omega \to \mathbb{H}_r$ conformally

D-components: $\tau|_{\Omega}: \Omega \to \mathbb{D}$ conformally

L-components: $\tau|_{\Omega}: \Omega \to \mathbb{H}_\ell$ conformally

More precisely:

R	Ω	$\tau	_{\Omega}$	\mathbb{H}_r	\cosh	$\mathbb{C}\setminus[-1, +1]$		
D	(Ω, \ast)	$\tau	_{\Omega}$	$(\mathbb{D}, 0)$	$z \mapsto z^{d_{\Omega}}$	$(\mathbb{D}, 0)$	ρ_{Ω}	(\mathbb{D}, w_{Ω})
L	(Ω, ∞)	$\tau	_{\Omega}$	$(\mathbb{H}_\ell, -\infty)$	\exp	$(\mathbb{D}, 0)$	ρ_{Ω}	(\mathbb{D}, v_{Ω})

where $\rho_{\Omega} : \mathbb{D} \to \mathbb{D}$ is quasiconformal with $\rho_{\Omega}(z) = z$, $\forall z \in \partial \mathbb{D}$.
Theorem 2 (Bishop 2012)

If \((T, \tau)\) satisfies the following conditions

1. \(T\) has bounded geometry
2. on \(R\)-components, every edge has \(\tau\)-size \(\geq \pi\)
3. \(D, L\)-components only share edges with \(R\)-components

then \(\forall (d_\Omega \geq 2, w_\Omega \in \frac{3}{4} \mathbb{D})_{\Omega \in \{D\text{-components}\}}\) and \((v_\Omega \in \frac{3}{4} \mathbb{D})_{\Omega \in \{L\text{-components}\}}\),

\exists an entire function \(f\) and a quasiconformal map \(\phi\) such that

\[
f \circ \phi = \sigma \circ \tau \text{ off } T(r_0) \text{ with } \sigma(z) = \begin{cases}
\cosh(z) & \text{on } R\text{-components} \\
\rho_\Omega(z^{d_\Omega}) & \text{on } D\text{-components} \\
\rho_\Omega(\exp(z)) & \text{on } L\text{-components}
\end{cases}
\]

Moreover

- quasiconformal foldings only occur in \(R\)-components
- the only critical values of \(f\) are \(\pm 1\) and \((w_\Omega)_{\Omega \in \{D\text{-components}\}}\)
- the only asymptotic values of \(f\) are \((v_\Omega)_{\Omega \in \{L\text{-components}\}}\)
- \(\forall D\text{-component } \Omega, \exists c \in \phi(\Omega) \text{ crit. point of } f \text{ with } \deg_{\text{loc}}(c, f) = d_\Omega\)
Corollary (Bishop 2012)

Let $E, F \subset \mathbb{C}$ be two bounded countable sets with $\text{card}(E) \geq 2$. Then there exists an entire function f such that

- E is the set of critical values of f
- F is the set of asymptotic values of f
Wandering under Bishop’s trees

Bishop’s construction 2: Sketch of the proof by quasiconformal foldings

Sébastien Godillon
Theorem 1 (Bishop 2012)

If \((T, \tau)\) satisfies the following conditions

1. \(T\) has bounded geometry
2. every edge has \(\tau\)-size \(\geq \pi\)

then \(\exists\) an entire function \(f\) and a quasiconformal map \(\phi\) such that

\[f \circ \phi = \cosh \circ \tau \text{ off } T(r_0) \]

Moreover

- \(f\) has exactly two critical values, \(-1\) and \(+1\)
- \(f\) has no finite asymptotic values
- \(\phi(T) \subset f^{-1}([-1, +1]) \quad (= \phi(T'))\)
- \(\forall c\) critical point of \(f\), \(\deg_{\text{loc}}(c, f) = \deg(c, \phi(T'))\)
Idea of the proof: Construct \((T', \eta)\) such that

- \(T \subset T' \subset T(r_0)\)
- \(\eta = \tau\) off \(T(r_0)\)
- \(\eta|_{\Omega'} : \Omega' \to \mathbb{H}_r\) is \(K\)-quasiconformal, \(\forall \Omega'\) c.c. of \(\mathbb{C} \setminus T'\)
- \(\cosh \circ \eta\) continuously extends across \(T'\)
Idea of the proof: Construct \((T', \eta) \) such that
- \(T \subset T' \subset T(r_0) \)
- \(\eta = \tau \) off \(T(r_0) \)
- \(\eta|_{\Omega'} : \Omega' \to \mathbb{H}_r \) is \(K \)-quasiconformal, \(\forall \Omega' \) c.c. of \(\mathbb{C} \setminus T' \)
- \(\cosh \circ \eta \) continuously extends across \(T' \)

Main problem: the behavior of \(\cosh \) on the two \(\tau \)-edges of \(e \), \(\forall \) edge \(e \).
Idea of the proof: Construct \((T', \eta)\) such that
\[T \subset T' \subset T(r_0) \]
\[\eta = \tau \text{ off } T(r_0) \]
\[\eta|_{\Omega'} : \Omega' \to \mathbb{H}_r \text{ is } K\text{-quasiconformal}, \forall \Omega' \text{ c.c. of } \mathbb{C} \setminus T' \]
\[\cosh \circ \eta \text{ continuously extends across } T' \]

Main problem: the behavior of \(\cosh\) on the two \(\tau\)-edges of \(e\), \(\forall\) edge \(e\).

More precisely, \(\forall n \in \mathbb{Z}, \cosh : i\pi[n, n + 1] \xrightarrow{\text{homeo}} [-1, +1]\)

but

1. the two \(\tau\)-edges of \(e\) are not of the form \(i\pi[n, n + 1]\) in general
2. the two \(\tau\)-edges of \(e\) have different size in general (but \(\geq \pi\))
Particular case: \(\forall \) edge \(e \), the two \(\tau \)-edges of \(e \) have same size \(\geq \pi \).

Lemma 1

\(\exists K \geq 1 \) such that

\(\forall \Omega \) c.c. of \(\mathbb{C} \setminus T \), \(\exists \) a map \((\lambda_{\Omega} \circ \iota_{\Omega}) : \tau|_{\Omega}(\Omega) = \mathbb{H}_r \to \mathbb{H}_r \) such that

(i) \((\lambda_{\Omega} \circ \iota_{\Omega}) = \text{Id off} \tau|_{\Omega}\left(T(r_0) \cap \Omega\right) \)

(ii) \((\lambda_{\Omega} \circ \iota_{\Omega}) : \tau|_{\Omega}(\Omega) = \mathbb{H}_r \to \mathbb{H}_r \) is \(K \)-quasiconformal

(iii) \(\forall \) edge \(e \subset \partial \Omega_1 \cap \partial \Omega_2 \), \((\lambda_{\Omega_j} \circ \iota_{\Omega_j}) \circ \tau|_{\Omega_j} \) continuously extends to \(e \) with

\[
\begin{cases}

\left((\lambda_{\Omega_j} \circ \iota_{\Omega_j}) \circ \tau|_{\Omega_j}\right)(e) = i\pi[n_j, n_j + (2k + 1)] & \text{with } n_j \in \mathbb{Z}, k \in \mathbb{N} \\
(\lambda_{\Omega_1} \circ \iota_{\Omega_1}) \circ \tau|_{\Omega_1} - (\lambda_{\Omega_2} \circ \iota_{\Omega_2}) \circ \tau|_{\Omega_2} = i\pi(n_1 - n_2) \in i\pi2\mathbb{Z} & \text{on } e
\end{cases}
\]
\[
\left\{ \begin{array}{l}
\iota_\Omega : \mathbb{H}_r \to \mathbb{H}_r \text{ moves the vertices into } i\pi\mathbb{Z} \\
\lambda_\Omega : \mathbb{H}_r \to \mathbb{H}_r \text{ fixes } i\pi\mathbb{Z} \text{ and makes the continuity across } T
\end{array} \right.
\]
\[
\begin{align*}
\{ & \omega: \mathbb{H}_r \to \mathbb{H}_r \text{ moves the vertices into } i\pi\mathbb{Z} \\
\lambda: & \mathbb{H}_r \to \mathbb{H}_r \text{ fixes } i\pi\mathbb{Z} \text{ and makes the continuity across } T
\end{align*}
\]

\[
\cosh(i\pi\mathbb{Z}) = \{-1, +1\} \text{ leads to extra vertices.}
\]
Particular case: \forall edge e, the two τ-edges of e have same size $\geq \pi$.

Using Lemma 1, define

$$
\begin{cases}
\eta_{|\Omega} = (\lambda_{\Omega} \circ \iota_{\Omega}) \circ \tau_{|\Omega}, \ \forall \Omega \text{ c.c. of } \mathbb{C}\setminus T \\
T' = T \text{ with extra vertices coming from } \eta^{-1}(i\pi\mathbb{Z})
\end{cases}
$$

then

(i) \implies $\eta = \tau$ off $T(r_0)$
(ii) \implies $\eta_{|\Omega'} : \Omega' \to \mathbb{H}_r$ is K-quasiconformal, $\forall \Omega'$ c.c. of $\mathbb{C}\setminus T'$
(iii) \implies $\cosh \circ \eta$ continuously extends across T'
General case: by proceeding as for the particular case, we may assume that

\[\forall \text{ edge } e \subset \partial \Omega_1 \cap \partial \Omega_2, \quad \tau|_{\Omega_j} \text{ continuously extends to } e \text{ with } \]
\[\tau|_{\Omega_j}(e) = i\pi [n_j, n_j + (2k_j + 1)] \quad \text{with } n_j \in \mathbb{Z}, k_j \in \mathbb{N} \]
General case: by proceeding as for the particular case, we may assume that

\[\forall \text{ edge } e \subset \partial \Omega_1 \cap \partial \Omega_2, \quad \tau|_{\Omega_j} \text{ continuously extends to } e \text{ with } \tau|_{\Omega_j}(e) = i\pi[n_j, n_j + (2k_j + 1)] \quad \text{with } n_j \in \mathbb{Z}, k_j \in \mathbb{N} \]

Lemma 2 (quasiconformal folding)

\(\exists K \geq 1 \) such that
\(\forall \Omega \text{ c.c. of } \mathbb{C} \setminus T, \exists \) a map \(\psi_{\Omega} : W_{\Omega} \subset \mathbb{H}_r \rightarrow \mathbb{H}_r \) such that

(i) \(\partial W_{\Omega} \text{ is a smooth tree with } \partial \mathbb{H}_r \subset \partial W_{\Omega} \subset \tau|_{\Omega}\left(T(r_0) \cap \Omega\right) \)

(ii) \(\psi_{\Omega} : W_{\Omega} \subset \mathbb{H}_r \rightarrow \mathbb{H}_r \) is \(K \)-quasiconformal

(iii) \(\forall \text{ edge } e \subset \partial W_{\Omega_1} \cap \partial W_{\Omega_2}, \psi_{\Omega_j} \circ \tau|_{\Omega_j} \text{ continuously extends to } e \text{ with } \)

\[
\begin{cases}
\left(\psi_{\Omega_j} \circ \tau|_{\Omega_j}\right)(e) = i\pi[m_j, m_j + 1] & \text{with } m_j \in \mathbb{Z} \\
\psi_{\Omega_1} \circ \tau|_{\Omega_1} - \psi_{\Omega_2} \circ \tau|_{\Omega_2} = i\pi(m_1 - m_2) \in i\pi2\mathbb{Z} & \text{on } e
\end{cases}
\]
\(\psi_\Omega : W_\Omega \to \mathbb{H}_r \) maps every \(\tau \)-edge onto a segment in \(\partial \mathbb{H}_r \) of length \(\pi \)
Problem: Find a quasiconformal map ψ from a square to itself such that

\[
\begin{align*}
\psi & \text{ maps the left side to an edge of length } \pi \\
\psi & \text{ acts as identity on the right side}
\end{align*}
\]
Problem: Find a quasiconformal map ψ from a square to itself such that

\[
\begin{align*}
\psi & \text{ maps the left side to an edge of length } \pi \\
\psi & \text{ acts as identity on the right side}
\end{align*}
\]

Solution: Add some extra edges and “unfold”.

3π
Problem: Find a quasiconformal map ψ from a square to itself such that

\[
\begin{align*}
\psi & \text{ maps the left side to an edge of length } \pi \\
\psi & \text{ acts as identity on the right side}
\end{align*}
\]

Solution: Add some extra edges and “unfold”.

ψ^{-1} is called a quasiconformal folding.
Problem: Find a quasiconformal map ψ from a square to itself such that

\[
\begin{align*}
\psi & \text{ maps the left side to an edge of length } \pi \\
\psi & \text{ acts as identity on the right side}
\end{align*}
\]
Problem: Find a quasiconformal map ψ from a square to itself such that

\[
\begin{cases}
\psi \text{ maps the left side to an edge of length } \pi \\
\psi \text{ acts as identity on the right side}
\end{cases}
\]

Solution: Add some extra edges and “unfold”.

$\psi - 1$ is called a quasiconformal folding.
Problem: Find a quasiconformal map ψ from a square to itself such that

\[
\begin{align*}
\psi & \text{ maps the left side to an edge of length } \pi \\
\psi & \text{ acts as identity on the right side}
\end{align*}
\]

Solution: Add some extra edges and "unfold".

ψ^{-1} is called a quasiconformal folding.
Problem: Find a quasiconformal map ψ from a square to itself such that

\[
\begin{align*}
\psi & \text{ maps the left side to an edge of length } \pi \\
\psi & \text{ acts as identity on the right side}
\end{align*}
\]

ψ is called a quasiconformal folding.
Problem: Find a quasiconformal map ψ from a square to itself such that

\[
\begin{cases}
\psi \text{ maps the left side to an edge of length } \pi \\
\psi \text{ acts as identity on the right side}
\end{cases}
\]

Solution: Add some extra edges and “unfold”.
Problem: Find a quasiconformal map ψ from a square to itself such that

\[
\begin{aligned}
\psi & \text{ maps the left side to an edge of length } \pi \\
\psi & \text{ acts as identity on the right side}
\end{aligned}
\]

Solution: Add some extra edges and “unfold”.

ψ^{-1} is called a quasiconformal folding.
BUT

the dilatation of ψ should be uniformly bounded independently of the square size.
ψ^{-1}
$\psi_\Omega : W_\Omega \to \mathbb{H}_r$ maps every τ-edge onto a segment in $\partial \mathbb{H}_r$ of length π
$\psi_{\Omega} : W_\Omega \to \mathbb{H}_r$ maps every τ-edge onto a segment in $\partial \mathbb{H}_r$ of length π

$\tau^{-1}_{|\Omega}(\partial W_\Omega)$ leads to extra vertices and edges.
General case: by proceeding as for the particular case, we may assume that

\[\forall \text{ edge } e \subset \partial \Omega_1 \cap \partial \Omega_2, \quad \tau_{|\Omega_j} \text{ continuously extends to } e \text{ with } \]

\[\tau_{|\Omega_j}(e) = i\pi[n_j, n_j + (2k_j + 1)] \quad \text{with } n_j \in \mathbb{Z}, k_j \in \mathbb{N} \]

Lemma 2 (quasiconformal folding)

\[\exists K \geq 1 \text{ such that } \]

\[\forall \Omega \text{ c.c. of } \mathbb{C} \setminus T, \exists \text{ a map } \psi_{\Omega} : W_{\Omega} \subset \mathbb{H}_r \rightarrow \mathbb{H}_r \text{ such that } \]

\[(o) \quad \partial W_{\Omega} \text{ is a smooth tree with } \partial \mathbb{H}_r \subset \partial W_{\Omega} \subset \tau_{|\Omega} (T(r_0) \cap \Omega) \]

\[(i) \quad \psi_{\Omega} = \text{Id off } \tau_{|\Omega} (T(r_0) \cap \Omega) \]

\[(ii) \quad \psi_{\Omega} : W_{\Omega} \subset \mathbb{H}_r \rightarrow \mathbb{H}_r \text{ is } K\text{-quasiconformal} \]

\[(iii) \quad \forall \text{ edge } e \subset \partial W_{\Omega_1} \cap \partial W_{\Omega_2}, \psi_{\Omega_j} \circ \tau_{|\Omega_j} \text{ continuously extends to } e \text{ with } \]

\[\begin{cases}
 (\psi_{\Omega_j} \circ \tau_{|\Omega_j})(e) = i\pi[m_j, m_j + 1] & \text{with } m_j \in \mathbb{Z} \\
 \psi_{\Omega_1} \circ \tau_{|\Omega_1} - \psi_{\Omega_2} \circ \tau_{|\Omega_2} = i\pi(m_1 - m_2) \in i\pi2\mathbb{Z} & \text{on } e
\end{cases} \]
General case: by proceeding as for the particular case, we may assume that

\[\forall \text{ edge } e \subset \partial \Omega_1 \cap \partial \Omega_2, \quad \tau|_{\Omega_j} \text{ continuously extends to } e \text{ \text{ with}} \]

\[\tau|_{\Omega_j}(e) = i\pi[n_j, n_j + (2k_j + 1)] \quad \text{ with } n_j \in \mathbb{Z}, k_j \in \mathbb{N} \]

Using Lemma 2, define

\[
\begin{cases}
\eta|_{\Omega} = \psi_{\Omega} \circ \tau|_{\Omega}, \quad \forall \Omega \text{ c.c. of } \mathbb{C} \setminus T \\
T' = T \text{ with extra vertices and edges coming from } \eta^{-1}(\partial \mathbb{H}_r)
\end{cases}
\]

Then

(i) \[\implies \eta = \tau \text{ off } T(r_0) \]

(ii) \[\implies \eta|_{\Omega'} : \Omega' \to \mathbb{H}_r \text{ is } K\text{-quasiconformal, } \forall \Omega' \text{ c.c. of } \mathbb{C} \setminus T' \]

(iii) \[\implies \cosh \circ \eta \text{ continuously extends across } T' \]
Tak for din opmærksomhed!
Wandering under Bishop’s trees

Existence and non-existence of wandering domains for entire functions

Sébastien Godillon
Wandering domain

Let \(f \) be a rational map or a transcendental entire function. A Fatou domain \(U \) of \(f \) is said to be wandering if

\[
\forall n \neq m, \quad f^n(U) \cap f^m(U) = \emptyset
\]

Sullivan, 1985

If \(f \) is a rational map then \(f \) has no wandering domains.

Main tools: quasiconformal deformations

Singular set

Let \(f : \mathbb{C} \to \mathbb{C} \) be a transcendental entire function. Denote by \(S(f) = \text{Crit}(f) \cup \text{Asym}(f) \) the set of finite singular values. Eremenko-Lyubich, Goldberg-Keen, 1986

If \(|S(f)| < +\infty \) then \(f \) has no wandering domains.

Main tools: quasiconformal deformations
Wandering domain

Let f be a rational map or a transcendental entire function. A Fatou domain U of f is said to be wandering if

$$\forall n \neq m, \quad f^n(U) \cap f^m(U) = \emptyset$$

Sullivan, 1985

If f is a rational map then f has no wandering domains.

Main tools: quasiconformal deformations
Wandering domain

Let f be a rational map or a transcendental entire function. A Fatou domain U of f is said to be wandering if

$$\forall n \neq m, \quad f^n(U) \cap f^m(U) = \emptyset$$

Sullivan, 1985

If f is a rational map then f has no wandering domains.

Main tools: quasiconformal deformations

Singular set

Let $f : \mathbb{C} \to \mathbb{C}$ be a transcendental entire function. Denote by $S(f) = \overline{\text{Crit}(f) \cup \text{Asym}(f)}$ the set of finite singular values.
Wandering domain

Let \(f \) be a rational map or a transcendental entire function. A Fatou domain \(U \) of \(f \) is said to be wandering if

\[
\forall n \neq m, \quad f^n(U) \cap f^m(U) = \emptyset
\]

Sullivan, 1985

If \(f \) is a rational map then \(f \) has no wandering domains.

Main tools: quasiconformal deformations

Singular set

Let \(f : \mathbb{C} \to \mathbb{C} \) be a transcendental entire function. Denote by \(S(f) = \overline{\text{Crit}(f) \cup \text{Asym}(f)} \) the set of finite singular values.

Eremenko-Lyubich, Goldberg-Keen, 1986

If \(|S(f)| < +\infty \) then \(f \) has no wandering domains.

Main tools: quasiconformal deformations
Baker, 1975

If U is a multiply connected Fatou domain of f then U is wandering.

Baker, 1976

$$g(z) = \frac{1}{4e} z^2 \prod_{n=1}^{\infty} \left(1 + \frac{z}{\gamma_n} \right)$$

for suitable $\gamma_n > 1$

has (multiply connected and hence) wandering domains.
Baker, 1976

\[g(z) = \frac{1}{4e} z^2 \prod_{n=1}^{\infty} \left(1 + \frac{z}{\gamma_n}\right) \text{ for suitable } \gamma_n > 1 \]

has (multiply connected) wandering domains.

Herman, 1981

\[
\begin{aligned}
 f_1(z) &= z - 1 + e^{-z} + 2\pi i \\
 f_2(z) &= z + \frac{e^{2\pi i \alpha} - 1}{2\pi} \sin(2\pi z) + 1
\end{aligned}
\]

for suitable \(\alpha \in \mathbb{R} \)

both have (simply connected) wandering domains.
Baker, 1976

\[g(z) = \frac{1}{4e} z^2 \prod_{n=1}^{\infty} \left(1 + \frac{z}{\gamma_n} \right) \quad \text{for suitable } \gamma_n > 1 \]

has (multiply connected) wandering domains.

Herman, 1981

\[
\begin{cases}
 f_1(z) = z - 1 + e^{-z} + 2\pi i \\
 f_2(z) = z + \frac{e^{2\pi i \alpha} - 1}{2\pi} \sin(2\pi z) + 1
\end{cases}
\quad \text{for suitable } \alpha \in \mathbb{R}
\]

both have (simply connected) wandering domains.

(Devaney et al., 1989) ??

\[f_3(z) = z + 2\pi \sin(z) \]

has wandering domains.
Fatou, 1920

If U is wandering then every limit function of $\{f^n|U\}_{n \geq 1}$ is constant. In particular, U is either:

- **escaping:** $\forall(n_k)$, $f^{n_k}|U \xrightarrow[k \to +\infty]{} \infty$

- **oscillating:** $\exists(n_k, m_k)$, $f^{n_k}|U \xrightarrow[k \to +\infty]{} \infty$ and $f^{m_k}|U \xrightarrow[k \to +\infty]{} a \in J(f)$

- **bounded:** $\forall(n_k)$, $f^{n_k}|U \not\xrightarrow[k \to +\infty]{} \infty$
Fatou, 1920

If U is wandering then every limit function of $\{f^n|_U\}_{n \geq 1}$ is constant. In particular, U is either:

- **escaping**: $\forall (n_k), \quad f^{n_k}|_U \xrightarrow[k \to +\infty]{} \infty$
- **oscillating**: $\exists (n_k, m_k), \quad f^{n_k}|_U \xrightarrow[k \to +\infty]{} \infty$ and $f^{m_k}|_U \xrightarrow[k \to +\infty]{} a \in \mathcal{J}(f)$
- **bounded**: $\forall (n_k), \quad f^{n_k}|_U \xrightarrow[k \to +\infty]{} \infty$

Baker, 1976

If $f^{n_k}|_U \xrightarrow[k \to +\infty]{} a$ then $a \in \overline{E} \cup \{\infty\}$ where $E = \bigcup_{s \in S(f)} \bigcup_{n \geq 1} f^n(s)$.
Fatou, 1920

If U is wandering then every limit function of $\{f^n|_U\}_{n \geq 1}$ is constant. In particular, U is either:

- **escaping:** $\forall (n_k)$, $f^{n_k}|_U \xrightarrow[k \to +\infty]{} \infty$
- **oscillating:** $\exists (n_k, m_k)$, $f^{n_k}|_U \xrightarrow[k \to +\infty]{} \infty$ and $f^{m_k}|_U \xrightarrow[k \to +\infty]{} a \in \mathcal{J}(f)$
- **bounded:** $\forall (n_k)$, $f^{n_k}|_U \xrightarrow[k \to +\infty]{} \infty$

Baker, 1976

If $f^{n_k}|_U \xrightarrow[k \to +\infty]{} a$ then $a \in \overline{E} \cup \{\infty\}$ where $E = \bigcup_{s \in S(f)} \bigcup_{n \geq 1} f^n(s)$.

Bergweiler et al., 1993

If $f^{n_k}|_U \xrightarrow[k \to +\infty]{} a$ then $a \in E' \cup \{\infty\}$.

$z \mapsto \exp(z), \quad z \mapsto \frac{\sin(z)}{z}, \quad$ and $z \mapsto \frac{\pi^2}{\pi^2 - z^2} \sin(z)$ have no wandering domains.
∃ an entire function f which has (Fatou domains with infinitely many finite constant limit functions and hence) oscillating wandering domains.

Main tool: approximation theory
Eremenko-Lyubich, 1987

∃ an entire function f which has (Fatou domains with infinitely many finite constant limit functions and hence) oscillating wandering domains.

Main tool: approximation theory

Singh, 2003

∃ two entire functions f, g and a domain $U \subset \mathbb{C}$ which lies in

\[
\begin{cases}
\text{a periodic domain} & \text{for } f, g, \text{ and } g \circ f \\
\text{a wandering domain} & \text{for } f \circ g
\end{cases}
\]

However $g \circ f$ must have wandering domains (Bergweiler-Wang, 1998).

Main tool: approximation theory
Eremenko-Lyubich, 1987

\[\exists \text{ an entire function } f \text{ which has (Fatou domains with infinitely many finite constant limit functions and hence) oscillating wandering domains.} \]

Main tool: approximation theory

Singh, 2003

\[\exists \text{ two entire functions } f, g \text{ and a domain } U \subset \mathbb{C} \text{ which lies in} \]

\[\begin{align*}
\{ & \text{a periodic domain for } f, g, \text{ and } g \circ f \\
& \text{a wandering domain for } f \circ g
\end{align*} \]

However, \(g \circ f \) must have wandering domains (Bergweiler-Wang, 1998).

Main tool: approximation theory

Question: Do there exist \(f, g \) which both have no wandering domains but whose composition \(f \circ g \) has some?
Eremenko-Lyubich’s class

\[\mathcal{B} = \left\{ f : \mathbb{C} \to \mathbb{C} \text{ entire function such that } S(f) \text{ is bounded} \right\} \]
Eremenko-Lyubich’s class

\[\mathcal{B} = \left\{ f : \mathbb{C} \to \mathbb{C} \text{ entire function such that } S(f) \text{ is bounded} \right\} \]

Eremenko-Lyubich, 1992

If \(f \in \mathcal{B} \) then any wandering domain is either oscillating or bounded.

Main result: \(\mathcal{I}(f) \subset \mathcal{J}(f) \) (and hence \(\mathcal{J}(f) = \overline{\mathcal{I}(f)} \))
Eremenko-Lyubich’s class

\[B = \left\{ f : \mathbb{C} \to \mathbb{C} \text{ entire function such that } S(f) \text{ is bounded} \right\} \]

Eremenko-Lyubich, 1992

If \(f \in B \) then any wandering domain is either oscillating or bounded.

Main result: \(\mathcal{I}(f) \subset \mathcal{J}(f) \) (and hence \(\mathcal{J}(f) = \overline{\mathcal{I}(f)} \))

Mihaljević-Rempe, 2012

If \(f \in B \) satisfies \(\sup_{s \in S(f)} |f^n(s)| \xrightarrow{n \to +\infty} +\infty \) and a certain condition (⋆) then \(f \) has no wandering domains.

Main tool: hyperbolic geometry

\[z \mapsto \lambda \frac{\sinh(z)}{z} + a \] for every \(\lambda, a \in \mathbb{R} \) has no wandering domains.
∃ an entire function $f \in \mathcal{B}$ which has (oscillating) wandering domains (with infinitely many finite constant limit functions).

Main tool: Bishop’s construction by quasiconformal foldings
Wandering under Bishop’s trees
-
Examples of wandering domains in Eremenko-Lyubich’s class

Sébastien Godillon
∃ an entire function $f \in \mathcal{B}$ which has (oscillating) wandering domains (with infinitely many finite constant limit functions).

Main tool: Bishop’s construction by quasiconformal foldings
Bishop’s example is of the form:

\[f = F \circ \phi \quad \text{with} \quad \begin{cases}
F : \mathbb{C} \to \mathbb{C} \text{ quasiregular (transcendental)} \\
\phi : \mathbb{C} \to \mathbb{C} \text{ quasiconformal so that } \mu_{\phi^{-1}} = F^*(\mu_0)
\end{cases} \]
Bishop’s example is of the form:

\[f = F \circ \phi \quad \text{with} \quad \left\{ \begin{array}{l} F : \mathbb{C} \to \mathbb{C} \text{ quasiregular (transcendental)} \\ \phi : \mathbb{C} \to \mathbb{C} \text{ quasiconformal so that } \mu_{\phi^{-1}} = F^*(\mu_0) \end{array} \right. \]

Moreover,

- \(\forall z \in \mathbb{C}, \ F(-z) = F(z) \) and \(F(\bar{z}) = \overline{F(z)} \)
- \(\text{Crit}(F) = \{-1, +1\} \cup \{w_n, \ n \geq 1\} \cup \{\frac{1}{2}\} \subset \overline{\mathbb{D}} \) with \(w_n \xrightarrow{n \to +\infty} \frac{1}{2} \)
- \(\text{Asym}(F) = \emptyset \)
Bishop’s example is of the form:

\[f = F \circ \phi \quad \text{with} \quad \begin{cases} F : \mathbb{C} \to \mathbb{C} \text{ quasiregular (transcendental)} \\ \phi : \mathbb{C} \to \mathbb{C} \text{ quasiconformal so that } \mu_{\phi^{-1}} = F^*(\mu_0) \end{cases} \]

Moreover,

- \(\forall z \in \mathbb{C}, F(-z) = F(z) \) and \(F(\bar{z}) = \overline{F(z)} \)
- \(\text{Crit}(F) = \{-1, +1\} \cup \{w_n, \ n \geq 1\} \cup \{\frac{1}{2}\} \subset \overline{\mathbb{D}} \) with \(w_n \xrightarrow{n \to +\infty} \frac{1}{2} \)
- \(\text{Asym}(F) = \emptyset \)

\[\implies \text{the same holds for } f \text{ as well.} \]
Bishop’s example is of the form:

\[f = F \circ \phi \quad \text{with} \quad \begin{cases} F : \mathbb{C} \to \mathbb{C} \text{ quasiregular (transcendental)} \\ \phi : \mathbb{C} \to \mathbb{C} \text{ quasiconformal so that } \mu_{\phi^{-1}} = F^*(\mu_0) \end{cases} \]

Moreover,

- \(\forall z \in \mathbb{C}, \ F(-z) = F(z) \) and \(F(\bar{z}) = \overline{F(z)} \)
- \(\text{Crit}(F) = \{-1, +1\} \cup \{w_n, \ n \geq 1\} \cup \{\frac{1}{2}\} \subset \overline{\mathbb{D}} \) with \(w_n \xrightarrow[n \to +\infty]{} \frac{1}{2} \)
- \(\text{Asym}(F) = \emptyset \)

\(\implies \) the same holds for \(f \) as well.

- \(\text{supp}(F^*(\mu_0)) \) is small enough in order that we may find \(\phi \approx \text{Id}_\mathbb{C} \)
F is constructed following an infinite graph.
F is constructed following an infinite graph.
F is constructed following an infinite graph.
F maps \{ straight lines \ onto \ $[-1, +1]$ \\
circle arcs \ onto \ $\partial \mathbb{D}$ \}
$F : S^+ \xrightarrow{\lambda \sinh} \mathbb{H}_r \xrightarrow{\cosh} \mathbb{C} \setminus [-1, +1]$

for some parameter $\lambda > 0$.

\[z \quad \lambda \sinh \quad \mathbb{H}_r \quad \cosh \quad \mathbb{C} \setminus [-1, +1] \cosh(\lambda \sinh(z)) \]
for some parameter $\lambda > 0$.
For every $n \geq 1$,

$$F : (D_n, z_n) \xrightarrow{z \mapsto (z - z_n)^{d_n}} (\mathbb{D}, 0) \xrightarrow{\rho_n} (\mathbb{D}, w_n)$$

with

$$\left\{ \begin{array}{l}
\rho_n : \mathbb{D} \to \mathbb{D} \text{ quasiconformal} \\
\rho_n(0) = w_n
\end{array} \right.$$

for some parameters $d_n \xrightarrow{n \to +\infty} +\infty$ and $w_n \xrightarrow{n \to \infty} \frac{1}{2}$.
For every \(n \geq 1 \),

\[
F : (D_n, z_n) \xrightarrow{z \mapsto (z - z_n)^{d_n}} (\mathbb{D}, 0) \xrightarrow{\rho_n} (\mathbb{D}, w_n)
\]

with

\[
\rho_n : \mathbb{D} \to \mathbb{D} \text{ quasiconformal}
\]

\[
\rho_n(0) = w_n
\]

\[
\text{supp}(\mu_{\rho_n}) \subset \{ \frac{1}{2} \leq |z| \leq 1 \}
\]

for some parameters \(d_n \xrightarrow{n \to +\infty} +\infty \) and \(w_n \xrightarrow{n \to \infty} \frac{1}{2} \).
Using Bishop’s construction by quasiconformal foldings, F may be extended to a quasiregular map $F : \mathbb{C} \to \mathbb{C}$ such that:

- $\forall z \in \mathbb{C}, F(-z) = F(z)$ and $F(\overline{z}) = \overline{F(z)}$
- $\text{Crit}(F) = \{-1, +1\} \cup \{w_n, \ n \geq 1\} \cup \{\frac{1}{2}\} \subset \overline{D}$ with $w_n \xrightarrow{n \to +\infty} \frac{1}{2}$
- $\text{Asym}(F) = \emptyset$

Let $f = F \circ \phi$ with $\phi : \mathbb{C} \to \mathbb{C}$ quasiconformal so that $\mu_{\phi^{-1}} = F^*(\mu_0)$.

![Diagram showing the concept of Bishop's construction with quasiconformal foldings and the extension of F to a quasiregular map.](image-url)
Using Bishop’s construction by quasiconformal foldings, F may be extended to a quasiregular map $F : \mathbb{C} \to \mathbb{C}$ such that:

- $\forall z \in \mathbb{C}, \ F(-z) = F(z)$ and $F(\bar{z}) = \overline{F(z)}$
- $\text{Crit}(F) = \{-1, +1\} \cup \{w_n, \ n \geq 1\} \cup \{\frac{1}{2}\} \subset \overline{\mathbb{D}}$ with $w_n \xrightarrow{n \to +\infty} \frac{1}{2}$
- $\text{Asym}(F) = \emptyset$
- $\text{supp}(F^*(\mu_0))$ is small enough
Using Bishop’s construction by quasiconformal foldings, F may be extended to a quasiregular map $F : \mathbb{C} \to \mathbb{C}$ such that:

- $\forall z \in \mathbb{C}, \ F(-z) = F(z)$ and $F(\overline{z}) = \overline{F(z)}$
- $\text{Crit}(F) = \{-1, +1\} \cup \{w_n, \ n \geq 1\} \cup \{\frac{1}{2}\} \subset \overline{D}$ with $w_n \xrightarrow{n \to +\infty} \frac{1}{2}$
- $\text{Asym}(F) = \emptyset$
- $\text{supp}(F^*(\mu_0))$ is small enough in order that $\phi|_{S^+} \approx \text{Id}_{S^+}$

Let $f = F \circ \phi$ with $\phi : \mathbb{C} \to \mathbb{C}$ quasiconformal so that $\mu_{\phi^{-1}} = F^*(\mu_0)$.
Choice of the parameters \((\lambda, (d_n)_{n\geq 1}, (w_n)_{n\geq 1})\)

- \(\lambda > 0\) is fixed so that \(f^n \left(\frac{1}{2} \right) \xrightarrow[n \to +\infty]{} +\infty\) very fast.

\[\forall x \in \mathbb{R}, \quad f(x) = \cosh \left(\lambda \sinh \left(\varphi \big| \mathbb{R} \big(x \big) \right) \right) \approx \frac{1}{2} \exp \left(\frac{\lambda}{2} \exp(x) \right)\]
\[S^+ \]

\[1/2 \] \[f^{(1/2)} \] \[f^{n-1(1/2)} \] \[f^n(1/2) \] \[f^{n+1(1/2)} \]

\[\tilde{D}_n \]

\[\tilde{D}_{n+1} \]
\[S^+ \quad f(1/2) \quad f^{n-1}(1/2) \quad f^n(1/2) \quad f^{n+1}(1/2) \]

\[D_n \]

\[\tilde{D}_n \]

\[\tilde{D}_{n+1} \]
\[f_{n+1}(1/2) = \frac{1}{4} \tilde{D}_n \]

and inradius \((U_{n+1}) \geq C\) and

\[(df_n dx)_{\mid x = 1/2} - 1 f_n + 1 (U_{n+1}) = \frac{1}{4} \tilde{D}_n + 1 \]

and inradius \((U_{n+1}) \geq C\) and diam \((f(U_{n+1})) \leq C'\).
\[f^n(U_n) = \frac{1}{4} \tilde{D}_n \quad \text{and} \quad \text{inradius}(U_n) \geq C \left(\left. \frac{df^n}{dx} \right|_{x=\frac{1}{2}} \right)^{-1} \]
\[f^n(U_n) = \frac{1}{4} \tilde{D}_n \quad \text{and} \quad \text{inradius}(U_n) \geq C. \left(\frac{df^n}{dx} \bigg|_{x=\frac{1}{2}} \right)^{-1} \]

\[f^{n+1}(U_{n+1}) = \frac{1}{4} \tilde{D}_{n+1} \quad \text{and} \quad \text{inradius}(U_{n+1}) \geq C. \left(\frac{df^{n+1}}{dx} \bigg|_{x=\frac{1}{2}} \right)^{-1} \]
\[f^{n+1}(U_{n+1}) = \frac{1}{4} \tilde{D}_{n+1} \quad \text{and} \quad \text{inradius}(U_{n+1}) \geq C \left(\frac{d f^{n+1}}{d x} \bigg|_{x=\frac{1}{2}} \right)^{-1} \]

\[\tilde{w}_n \in f \left(\frac{1}{4} \tilde{D}_n \right) \quad \text{and} \quad \text{diam} \left(f \left(\frac{1}{4} \tilde{D}_n \right) \right) \leq C' \left(\frac{1}{4} \tilde{d}_n \right) \]
Choice of the parameters \((\lambda, (d_n)_{n \geq 1}, (w_n)_{n \geq 1})\)

- \(\lambda > 0\) is fixed so that \(f^n \left(\frac{1}{2} \right) \xrightarrow[n \to +\infty]{} +\infty\) very fast.

- \(\tilde{d}_n \xrightarrow[n \to +\infty]{} +\infty\) and \(\tilde{w}_n \xrightarrow[n \to \infty]{} \frac{1}{2}\) are fixed so that

\[
\forall n \geq N, \quad f^{n+1}(U_n) = f \left(\frac{1}{4} \tilde{D}_n \right) \subset U_{n+1}.
\]
Choice of the parameters \((\lambda, (d_n)_{n\geq 1}, (w_n)_{n\geq 1})\)

- \(\lambda > 0\) is fixed so that \(f^n \left(\frac{1}{2}\right) \xrightarrow[n\to\infty]{} +\infty\) very fast.

- \(\tilde{d}_n \xrightarrow[n\to\infty]{} +\infty\) and \(\tilde{w}_n \xrightarrow[n\to\infty]{} \frac{1}{2}\) are fixed so that

\[
\forall n \geq N, \quad f^{n+1}(U_n) = f \left(\frac{1}{4} \tilde{D}_n\right) \subset U_{n+1}.
\]

Therefore,

\[
U_N \xrightarrow{f^{N+1}} U_{N+1} \xrightarrow{f^{N+2}} U_{N+2} \xrightarrow{f^{N+3}} U_{N+3} \xrightarrow{f^{N+4}} \ldots
\]
Bishop’s example has no unexpected wandering domains.
Main ingredients of the proof:
Let W be a wandering domain of f (in the upper half plane).

1. **Baker’s argument**

2. **Mihaljević-Rempe’s hyperbolic geometry lemma**
Main ingredients of the proof:
Let W be a wandering domain of f (in the upper half plane).

1. **Baker’s argument** (here $E' = \{ f^n \left(\frac{1}{2} \right) \}_{n \geq 1}$)

 \[\exists (n_k) \text{ such that } \begin{cases} f^{n_k}|_{W} \xrightarrow{k \to +\infty} \frac{1}{2} \\ f^{n_k-1}(W) \subset D_{m_k} \text{ for some } m_k \end{cases} \]

2. **Mihaljević-Rempe’s hyperbolic geometry lemma**
Main ingredients of the proof:

Let W be a wandering domain of f (in the upper half plane).

1. **Baker’s argument** (here $E' = \{f^n \left(\frac{1}{2}\right)\}_{n\geq 1}$)

 $$\exists (n_k) \text{ such that } \begin{cases} f^{n_k}|_W \xrightarrow[k\to+\infty]{} \frac{1}{2} \\ f^{n_k-1}(W) \subset D_{m_k} \text{ for some } m_k \end{cases}$$

2. **Mihaljević-Rempe’s hyperbolic geometry lemma**

 $$\text{dist}_U \left(f^{n_k-1}(W), U\setminus f^{-1}(\mathbb{D})\right) \xrightarrow[k\to+\infty]{} +\infty$$

 where $$U = \mathbb{C}\setminus \left(\left[\frac{1}{2}, +\infty\right]\cup \bigcup_{n\geq N} \bigcup_{j=1}^n f^j(U_n)\right)$$
Bishop’s example has no unexpected wandering domains.

Main ingredients of the proof:

Let \(W \) be a wandering domain of \(f \) (in the upper half plane).

1. **Baker’s argument** (here \(E' = \{ f^n \left(\frac{1}{2} \right) \}_{n \geq 1} \))

 \[\exists (n_k) \text{ such that } \begin{cases}
 f^{n_k}|_W \xrightarrow{k \to +\infty} \frac{1}{2} \\
 f^{n_k-1}(W) \subset D_{m_k} \text{ for some } m_k
 \end{cases} \]

2. **Mihaljević-Rempe’s hyperbolic geometry lemma**

 \[
 \text{dist}_U \left(f^{n_k-1}(W), U \setminus f^{-1}(\mathbb{D}) \right) \xrightarrow{k \to +\infty} +\infty
 \]

 where \(U = \mathbb{C} \setminus \left(\left[\frac{1}{2}, +\infty \right] \cup \bigcup_{n \geq N} \bigcup_{j=1}^n f^j(U_n) \right) \)

 \[\implies \begin{cases}
 f^{n_k-1}(W) \subset \tilde{D}_{p_k} \text{ for some } p_k \\
 \text{dist}_\mathbb{C} \left(f^{n_k-1}(W), \frac{1}{4} \tilde{D}_{p_k} \right) \xrightarrow{k \to +\infty} 0
 \end{cases} \]
Main ingredients of the proof:

Let W be a wandering domain of f (in the upper half plane).

1. **Baker’s argument** (here $E' = \{ f^n (\frac{1}{2}) \}_{n \geq 1}$)

 \[\exists (n_k) \text{ such that } \exists \left\{ \begin{array}{c} f^{n_k} \mid_W \xrightarrow{k \to +\infty} \frac{1}{2} \\ f^{n_k-1}(W) \subset D_{m_k} \text{ for some } m_k \end{array} \right. \]

2. **Mihaljević-Rempe’s hyperbolic geometry lemma**

 \[\text{dist}_U (f^{n_k-1}(W), U \setminus f^{-1}(\mathbb{D})) \xrightarrow{k \to +\infty} +\infty \]

 where $U = \mathbb{C} \setminus \left(\left[\frac{1}{2}, +\infty \right[\cup \bigcup_{n \geq N} \bigcup_{j=1}^n f^j(U_n) \right)$

 \[\Longrightarrow \left\{ \begin{array}{c} f^{n_k-1}(W) \subset \tilde{D}_{p_k} \text{ for some } p_k \\ \text{dist}_{\mathbb{C}} \left(f^{n_k-1}(W), \frac{1}{4} \tilde{D}_{p_k} \right) \xrightarrow{k \to +\infty} 0 \end{array} \right. \]

Therefore W is eventually mapped into some U_n.

■
Bishop’s example has no unexpected wandering domains.

Corollary

∃ two entire functions f, g (in B) which both have no wandering domains but whose composition $f \circ g$ has some.
Bishop’s example has no unexpected wandering domains.

Corollary

∃ two entire functions \(f, g \) (in \(B \)) which both have no wandering domains but whose composition \(f \circ g \) has some.

Strategy of the proof:

Construct \(f, g \) like Bishop’s example.

Chose the parameters \(\tilde{d}_n \xrightarrow{n \to +\infty} +\infty \) and \(\tilde{w}_n \xrightarrow{n \to \infty} \frac{1}{2} \) so that:

\[
\forall k \geq N, \quad \begin{cases}
 f^{4k+1}(U_{4k}) & \subset U_{4k+1} \\
 f^{4k+2}(U_{4k+1}) & \subset U_{4k+2}
\end{cases}
\quad \text{and} \quad \begin{cases}
 g^{4k+3}(U_{4k+2}) & \subset U_{4k+3} \\
 g^{4k+4}(U_{4k+3}) & \subset U_{4k+4}
\end{cases}
\]
Bishop’s example has no unexpected wandering domains.

Corollary

∃ two entire functions \(f, g \) (in \(B \)) which both have no wandering domains but whose composition \(f \circ g \) has some.

Strategy of the proof:

Construct \(f, g \) like Bishop’s example.

Chose the parameters \(\tilde{d}_n \xrightarrow[n\to+\infty]{} +\infty \) and \(\tilde{w}_n \xrightarrow[n\to\infty]{} \frac{1}{2} \) so that:

\[
\forall k \geq N,
\begin{align*}
 f^{4k+1}(U_{4k}) & \subset U_{4k+1} \\
 f^{4k+2}(U_{4k+1}) & \subset U_{4k+2} \\
 f^{4k+3}(U_{4k+2}) & \subset U_{4k+3} \\
 f^{4k+4}(U_{4k+3}) & \subset U_{4k+3}
\end{align*}
\]

and

\[
\begin{align*}
 g^{4k+1}(U_{4k}) & \subset U_{4k+1} \\
 g^{4k+2}(U_{4k+1}) & \subset U_{4k+1} \\
 g^{4k+3}(U_{4k+2}) & \subset U_{4k+3} \\
 g^{4k+4}(U_{4k+3}) & \subset U_{4k+4}
\end{align*}
\]