Test 1 - Answers and Solutions

Question about course 1.

$(R,+, \times)$ is a ring if it satisfies each of the following point
a) R is a nonempty set
b) + and \times are binary operations on R

$$
\forall a, b \in R,\left\{\begin{array}{l}
a+b \in R \\
a \times b \in R
\end{array}\right.
$$

c) $(R,+)$ is an abelian group, that is it satisfies each of the following point

$$
\text { c1) } \forall a, b, c \in R,(a+b)+c=a+(b+c)
$$

c2) $\exists 0 \in R / \forall a \in R, a+0=0+a=a$
c3) $\forall a \in R, \exists(-a) \in R / a+(-a)=(-a)+a=0$
c4) $\forall a, b \in R, a+b=b+a$
d) the binary operation \times is associative

$$
\forall a, b, c \in R,(a \times b) \times c=a \times(b \times c)
$$

e) the binary operation \times is distributive over the binary operation +

$$
\forall a, b, c \in R,\left\{\begin{array}{l}
a \times(b+c)=a \times b+a \times c \\
(b+c) \times a=b \times a+c \times a
\end{array}\right.
$$

Question about course 2.

φ is an automorphism of the group (G, \star) if it satisfies each of the following point
a) φ is a map from G into itself
b) φ is a bijection
b1) φ is injective: $\forall a, b \in G, \varphi(a)=\varphi(b) \Longrightarrow a=b$
b2) φ is surjective: $\forall a \in G, \exists b \in G / \varphi(b)=a$
c) φ is a group homomorphism: $\forall a, b \in G, \varphi(a \star b)=\varphi(a) \star \varphi(b)$

Exercise 3.

1. Let a and a^{\prime} be two elements in A, namely $a=n+k \sqrt{5}$ and $a^{\prime}=n^{\prime}+k^{\prime} \sqrt{5}$ where $n, k, n^{\prime}, k^{\prime} \in \mathbb{Z}$. Then

$$
a+\left(-a^{\prime}\right)=(n+k \sqrt{5})-\left(n^{\prime}+k^{\prime} \sqrt{5}\right)=n+k \sqrt{5}-n^{\prime}-k^{\prime} \sqrt{5}=\left(n-n^{\prime}\right)+\left(k-k^{\prime}\right) \sqrt{5}
$$

Since $\left(n-n^{\prime}\right) \in \mathbb{Z}$ and $\left(k-k^{\prime}\right) \in \mathbb{Z}$, it follows that $a+\left(-a^{\prime}\right) \in A$. Consequently $(A,+)$ is a subgroup of $(\mathbb{R},+)$.
2. We need to prove that \times is a binary operation on A, \times is associative and \times is distributive over + .
Let a and a^{\prime} be two elements in A, namely $a=n+k \sqrt{5}$ and $a^{\prime}=n^{\prime}+k^{\prime} \sqrt{5}$ where $n, k, n^{\prime}, k^{\prime} \in \mathbb{Z}$. Then
$a \times a^{\prime}=(n+k \sqrt{5}) \times\left(n^{\prime}+k^{\prime} \sqrt{5}\right)=n n^{\prime}+n k^{\prime} \sqrt{5}+n^{\prime} k \sqrt{5}+5 k k^{\prime}=\left(n n^{\prime}+5 k k^{\prime}\right)+\left(n k^{\prime}+n^{\prime} k\right) \sqrt{5}$
Since $\left(n n^{\prime}+5 k k^{\prime}\right) \in \mathbb{Z}$ and $\left(n k^{\prime}+n^{\prime} k\right) \in \mathbb{Z}$, it follows that $a \times a^{\prime} \in A$. Consequently \times is a binary operation on A.
Let a, a^{\prime} and $a^{\prime \prime}$ be three elements in A. Since \times is associative on \mathbb{R} and distributive over + on \mathbb{R}, we have

$$
\left\{\begin{aligned}
\left(a \times a^{\prime}\right) \times a^{\prime \prime} & =a \times\left(a^{\prime} \times a^{\prime \prime}\right) \\
a \times\left(a^{\prime}+a^{\prime \prime}\right) & =a \times a^{\prime}+a \times a^{\prime \prime} \\
\left(a^{\prime}+a^{\prime \prime}\right) \times a & =a^{\prime} \times a+a^{\prime \prime} \times a
\end{aligned}\right.
$$

Consequently \times is associative on A and distributive over + on A as well.
Exercise 4. 1. Let f and g be two elements in F_{0}, that are two functions from \mathbb{R} to itself such that $f(1)=g(1)=0$. Then the function $(f+(-g)): x \mapsto(f+(-g))(x)=f(x)-g(x)$ is from \mathbb{R} to itself and $(f+(-g))(1)=f(1)-g(1)=0-0=0$. Consequently $(f+(-g)) \in F_{0}$ and it follows that $\left(F_{0},+\right)$ is a subgroup of $(F,+)$.
2. Let f and g be two elements in F_{1}, that are two functions from \mathbb{R} to itself such that $f(1)=$ $g(1)=1$. Then the function $(f+g): x \mapsto(f+g)(x)=f(x)+g(x)$ is from \mathbb{R} to itself and $(f+g)(1)=f(1)+g(1)=1+1=2 \neq 1$. Consequently $(f+g) \notin F_{1}$ and it follows that + is not a binary operation on F_{1}. Finally $\left(F_{1},+\right)$ is not a group.
3. For every real number x, if f and g are two elements in F_{x} then the function $(f+g)$ is in $F_{2 x}$ (since $(f+g)(1)=f(1)+g(1)=x+x=2 x)$. But $F_{2 x}$ is disjoint from F_{x} as soon as $x \neq 0$ (since $2 x \neq x$). Therefore + is not a binary operation on F_{x} for $x \neq 0$. Consequently $x=0$ is the only one real number such that $\left(F_{x},+\right)$ is a group.
4. Let f and g be two elements in F, that are two function from \mathbb{R} to itself. Then

$$
\Phi(f+g)=(f+g)(1)=f(1)+g(1)=\Phi(f)+\Phi(g)
$$

Consequently, Φ is a homomorphism from $(F,+)$ into $(\mathbb{R},+)$.

Exercise 5.

1. $u_{0}=4^{3 \times 0+2}+8^{2 \times 0+1}=4^{2}+8^{1}=16+8=24=2 \times 9+6 \equiv 6$
2. $u_{1}=4^{3 \times 1+2}+8^{2 \times 1+1}=4^{5}+8^{3}$

Moreover

$$
\left\{\begin{array}{l}
4^{2}=4 \times 4=16=1 \times 9+7 \equiv 7 \tag{9}\\
4^{3}=4^{2} \times 4 \equiv 7 \times 4 \equiv 28 \equiv 3 \times 9+1 \equiv 1 \\
4^{5}=4^{3} \times 4^{2} \equiv 1 \times 7 \equiv 7 \quad[9] \\
8^{3}=(2 \times 4)^{3}=2^{3} \times 4^{3} \equiv 8 \times 1 \equiv 8
\end{array}\right.
$$

So $u_{1}=4^{5}+8^{3} \equiv 7+8 \equiv 15 \equiv 1 \times 9+6 \equiv 6$
$u_{2}=4^{3 \times 2+2}+8^{2 \times 2+1}=4^{8}+8^{5}$
Moreover

$$
\left\{\begin{array}{l}
4^{8}=4^{5} \times 4^{3} \equiv 7 \times 1 \equiv 7 \quad[9] \tag{9}\\
8^{5}=(2 \times 4)^{5}=2^{5} \times 4^{5} \equiv 32 \times 7 \equiv 5 \times 7 \equiv 35 \equiv 8
\end{array}\right.
$$

(since $32=3 \times 9+5 \equiv 5[9]$ and $35=3 \times 9+8 \equiv 8[9]$)
So $u_{2}=4^{8}+8^{5} \equiv 7+8 \equiv 15 \equiv 1 \times 9+6 \equiv 6 \quad[9]$
3. $u_{n+1}=4^{3(n+1)+2}+8^{2(n+1)+1}=4^{3+3 n+2}+8^{2+2 n+1}=4^{3} \times 4^{3 n+2}+8^{2} \times 8^{2 n+1}$

Moreover

$$
\left\{\begin{array}{l}
4^{3} \equiv 1 \quad[9] \\
8^{2}=8 \times 8=64=7 \times 9+1 \equiv 1
\end{array}\right.
$$

So $u_{n+1}=4^{3} \times 4^{3 n+2}+8^{2} \times 8^{2 n+1} \equiv 1 \times 4^{3 n+2}+1 \times 8^{2 n+1} \equiv 4^{3 n+2}+8^{2 n+1} \equiv u_{n} \quad[9]$ In particular the assumption $u_{n} \equiv 6[9]$ implies that $u_{n+1} \equiv 6$ [9].
4. It follows by induction that $u_{n} \equiv 6[9]$ for every $n \in \mathbb{N}$.

Exercise 6.

1. Since 13 is a prime number, every element in $\mathbb{Z} / 13 \mathbb{Z}$ distinct from $\overline{0}$ has an inverse element for the multiplication. It follows that $(\mathbb{Z} / 13 \mathbb{Z}-\{\overline{0}\}, \times)$ is a group.
2. We have

$$
\left\{\begin{array} { l l l }
{ 0 \times 6 = 0 \equiv 0 } & { [1 3] } \\
{ 1 \times 6 = 6 \equiv 6 } & { [1 3] } \\
{ 2 \times 6 = 1 2 \equiv 1 2 } & { [1 3] } & { } \\
{ 3 \times 6 = 1 8 = 1 \times 1 3 + 5 \equiv 5 } & { [1 3] } \\
{ 4 \times 6 = 2 4 = 1 \times 1 3 + 1 1 \equiv 1 1 } & { [1 3] } \\
{ 5 \times 6 = 3 0 = 2 \times 1 3 + 4 \equiv 4 \quad [1 3] } \\
{ 6 \times 6 = 3 6 = 2 \times 1 3 + 1 0 \equiv 1 0 } & { [1 3] }
\end{array} \quad \text { and } \quad \left\{\begin{array}{ll}
7 \times 6=42=3 \times 13+3 \equiv 3 & {[13]} \\
8 \times 6=48=3 \times 13+9 \equiv 9 & {[13]} \\
9 \times 6=54=4 \times 13+2 \equiv 2 & {[13]} \\
10 \times 6=60=4 \times 13+8 \equiv 8 & {[13]} \\
11 \times 6=66=5 \times 13+1 \equiv 1 & {[13]} \\
12 \times 6=72=5 \times 13+7 \equiv 7 & {[13]}
\end{array}\right.\right.
$$

So $y=\overline{11}$ answers the question $(\overline{11} \times \overline{6}=\overline{1}$ since $11 \times 6 \equiv 1[13])$
3. At first, since $(\mathbb{Z} / 13 \mathbb{Z},+)$ is a group, (E) is equivalent to

$$
\text { (E) } \overline{6} \times x=\overline{2}-\overline{7}=\overline{2-7}=\overline{-5}=\overline{-1 \times 13+8}=\overline{8}
$$

By multiplying both sides of (E) with $\overline{11}$, we get

$$
\text { (E) } \begin{aligned}
\overline{11} \times(\overline{6} \times x) & =\overline{11} \times \overline{8} \\
(\overline{11} \times \overline{6}) \times x & =\overline{11 \times 8} \quad \text { (by using associativity of } \times \text {) } \\
\overline{1} \times x & =\overline{88} \quad \text { (from the result of the previous question) } \\
x & =\overline{6 \times 13+10} \quad \text { (since } \overline{1} \text { is the identity element for } \times \text {) } \\
x & =\overline{10}
\end{aligned}
$$

Finally (E) has an unique solution in $\mathbb{Z} / 13 \mathbb{Z}$ which is $x=\overline{10}$.
4. Since 11 is a prime number, every element in $\mathbb{Z} / 11 \mathbb{Z}$ distinct from $\overline{0}$ has an inverse element for the multiplication. In particular $\overline{2} \times \overline{6}=\overline{2 \times 6}=\overline{12}=\overline{1 \times 11+1}=\overline{1}$. Therefore we get in $\mathbb{Z} / 11 \mathbb{Z}$

$$
\text { (E) } \begin{aligned}
\overline{2} \times(\overline{6} \times x) & =\overline{2} \times(\overline{2}-\overline{7}) \\
(\overline{2} \times \overline{6}) \times x & =\overline{2 \times-5} \\
\overline{1} \times x & =\overline{-10} \\
x & =\overline{-1 \times 11+1} \\
x & =\overline{1}
\end{aligned}
$$

Consequently (E) has an unique solution in $\mathbb{Z} / 11 \mathbb{Z}$ which is $x=\overline{1}$.

