Test 1 - Answers and Solutions

Question about course 1.

 $(R, +, \times)$ is a ring if it satisfies each of the following point

- a) R is a nonempty set
- **b)** + and \times are binary operations on R

 $\forall a, b \in R, \begin{cases} a+b \in R \\ a \times b \in R \end{cases}$

- c) (R, +) is an abelian group, that is it satisfies each of the following point
 - c1) ∀a, b, c ∈ R, (a + b) + c = a + (b + c)
 c2) ∃0 ∈ R/ ∀a ∈ R, a + 0 = 0 + a = a
 c3) ∀a ∈ R, ∃(-a) ∈ R/ a + (-a) = (-a) + a = 0
 c4) ∀a, b ∈ R, a + b = b + a
- d) the binary operation \times is associative $\forall a, b, c \in R, (a \times b) \times c = a \times (b \times c)$
- e) the binary operation × is distributive over the binary operation + $\forall a, b, c \in R, \begin{cases} a \times (b+c) = a \times b + a \times c \\ (b+c) \times a = b \times a + c \times a \end{cases}$

Question about course 2.

 φ is an automorphism of the group (G, \star) if it satisfies each of the following point

- a) φ is a map from G into itself
- **b**) φ is a bijection
 - **b1**) φ is injective: $\forall a, b \in G, \ \varphi(a) = \varphi(b) \Longrightarrow a = b$
 - **b2)** φ is surjective: $\forall a \in G, \exists b \in G / \varphi(b) = a$

c) φ is a group homomorphism: $\forall a, b \in G, \ \varphi(a \star b) = \varphi(a) \star \varphi(b)$

Exercise 3.

1. Let a and a' be two elements in A, namely $a = n + k\sqrt{5}$ and $a' = n' + k'\sqrt{5}$ where $n, k, n', k' \in \mathbb{Z}$. Then

$$a + (-a') = (n + k\sqrt{5}) - (n' + k'\sqrt{5}) = n + k\sqrt{5} - n' - k'\sqrt{5} = (n - n') + (k - k')\sqrt{5}$$

Since $(n - n') \in \mathbb{Z}$ and $(k - k') \in \mathbb{Z}$, it follows that $a + (-a') \in A$. Consequently (A, +) is a subgroup of $(\mathbb{R}, +)$.

2. We need to prove that \times is a binary operation on A, \times is associative and \times is distributive over +.

Let a and a' be two elements in A, namely $a = n + k\sqrt{5}$ and $a' = n' + k'\sqrt{5}$ where $n, k, n', k' \in \mathbb{Z}$. Then

 $a \times a' = (n + k\sqrt{5}) \times (n' + k'\sqrt{5}) = nn' + nk'\sqrt{5} + n'k\sqrt{5} + 5kk' = (nn' + 5kk') + (nk' + n'k)\sqrt{5}$

Since $(nn' + 5kk') \in \mathbb{Z}$ and $(nk' + n'k) \in \mathbb{Z}$, it follows that $a \times a' \in A$. Consequently \times is a binary operation on A.

Let a, a' and a'' be three elements in A. Since \times is associative on \mathbb{R} and distributive over + on \mathbb{R} , we have

$$\begin{cases} (a \times a') \times a'' &= a \times (a' \times a'') \\ a \times (a' + a'') &= a \times a' + a \times a'' \\ (a' + a'') \times a &= a' \times a + a'' \times a \end{cases}$$

Consequently \times is associative on A and distributive over + on A as well.

- **Exercise 4.** 1. Let f and g be two elements in F_0 , that are two functions from \mathbb{R} to itself such that f(1) = g(1) = 0. Then the function $(f + (-g)) : x \mapsto (f + (-g))(x) = f(x) g(x)$ is from \mathbb{R} to itself and (f + (-g))(1) = f(1) g(1) = 0 0 = 0. Consequently $(f + (-g)) \in F_0$ and it follows that $(F_0, +)$ is a subgroup of (F, +).
 - 2. Let f and g be two elements in F_1 , that are two functions from \mathbb{R} to itself such that f(1) = g(1) = 1. Then the function $(f+g): x \mapsto (f+g)(x) = f(x) + g(x)$ is from \mathbb{R} to itself and $(f+g)(1) = f(1) + g(1) = 1 + 1 = 2 \neq 1$. Consequently $(f+g) \notin F_1$ and it follows that + is not a binary operation on F_1 . Finally $(F_1, +)$ is not a group.
 - 3. For every real number x, if f and g are two elements in F_x then the function (f+g) is in F_{2x} (since (f+g)(1) = f(1) + g(1) = x + x = 2x). But F_{2x} is disjoint from F_x as soon as $x \neq 0$ (since $2x \neq x$). Therefore + is not a binary operation on F_x for $x \neq 0$. Consequently x = 0is the only one real number such that $(F_x, +)$ is a group.
 - 4. Let f and g be two elements in F, that are two function from \mathbb{R} to itself. Then

$$\Phi(f+g) = (f+g)(1) = f(1) + g(1) = \Phi(f) + \Phi(g)$$

Consequently, Φ is a homomorphism from (F, +) into $(\mathbb{R}, +)$.

Exercise 5.

1. $u_0 = 4^{3 \times 0+2} + 8^{2 \times 0+1} = 4^2 + 8^1 = 16 + 8 = 24 = 2 \times 9 + 6 \equiv 6$ [9] 2. $u_1 = 4^{3 \times 1+2} + 8^{2 \times 1+1} = 4^5 + 8^3$ Moreover $\begin{cases}
4^2 = 4 \times 4 = 16 = 1 \times 9 + 7 \equiv 7 \quad [9] \\
4^3 = 4^2 \times 4 \equiv 7 \times 4 \equiv 28 \equiv 3 \times 9 + 1 \equiv 1 \quad [9] \\
4^5 = 4^3 \times 4^2 \equiv 1 \times 7 \equiv 7 \quad [9] \\
8^3 = (2 \times 4)^3 = 2^3 \times 4^3 \equiv 8 \times 1 \equiv 8 \quad [9]
\end{cases}$ So $u_1 = 4^5 + 8^3 \equiv 7 + 8 \equiv 15 \equiv 1 \times 9 + 6 \equiv 6 \quad [9] \\
u_2 = 4^{3 \times 2+2} + 8^{2 \times 2+1} = 4^8 + 8^5$ Moreover $\begin{cases}
4^8 = 4^5 \times 4^3 \equiv 7 \times 1 \equiv 7 \quad [9] \\
8^5 = (2 \times 4)^5 = 2^5 \times 4^5 \equiv 32 \times 7 \equiv 5 \times 7 \equiv 35 \equiv 8 \quad [9] \\
\text{(since } 32 = 3 \times 9 + 5 \equiv 5 \quad [9] \text{ and } 35 = 3 \times 9 + 8 \equiv 8 \quad [9]) \\
\text{So } u_2 = 4^8 + 8^5 \equiv 7 + 8 \equiv 15 \equiv 1 \times 9 + 6 \equiv 6 \quad [9]
\end{cases}$ 3. $u_{n+1} = 4^{3(n+1)+2} + 8^{2(n+1)+1} = 4^{3+3n+2} + 8^{2+2n+1} = 4^3 \times 4^{3n+2} + 8^2 \times 8^{2n+1}$ Moreover

$$\begin{cases} 4^3 \equiv 1 \quad [9] \\ 8^2 = 8 \times 8 = 64 = 7 \times 9 + 1 \equiv 1 \quad [9] \end{cases}$$

 $\begin{array}{c} \bigcirc & - \odot \land \odot - \mho 4 = t \times 9 + 1 \equiv 1 \quad [9] \\ \text{So } u_{n+1} = 4^3 \times 4^{3n+2} + 8^2 \times 8^{2n+1} \equiv 1 \times 4^{3n+2} + 1 \times 8^{2n+1} \equiv 4^{3n+2} + 8^{2n+1} \equiv u_n \\ \text{In particular the assumption } u_n \equiv 6 \ [9] \text{ implies that } u_{n+1} \equiv 6 \ [9]. \end{array}$ [9]

4. It follows by induction that $u_n \equiv 6$ [9] for every $n \in \mathbb{N}$.

Exercise 6.

- 1. Since 13 is a prime number, every element in $\mathbb{Z}/13\mathbb{Z}$ distinct from $\overline{0}$ has an inverse element for the multiplication. It follows that $(\mathbb{Z}/13\mathbb{Z} - \{\overline{0}\}, \times)$ is a group.
- 2. We have

 $\begin{cases} 5 \times 6 = 0 = 0 & [13] \\ 1 \times 6 = 6 \equiv 6 & [13] \\ 2 \times 6 = 12 \equiv 12 & [13] \\ 3 \times 6 = 18 = 1 \times 13 + 5 \equiv 5 & [13] \\ 4 \times 6 = 24 = 1 \times 13 + 11 \equiv 11 & [13] \\ 5 \times 6 = 30 = 2 \times 13 + 4 \equiv 4 & [13] \\ 6 \times 6 = 36 = 2 \times 13 + 10 \equiv 10 & [13] \end{cases} and \begin{cases} 7 \times 6 = 42 = 3 \times 13 + 3 \equiv 3 & [13] \\ 8 \times 6 = 48 = 3 \times 13 + 9 \equiv 9 & [13] \\ 9 \times 6 = 54 = 4 \times 13 + 2 \equiv 2 & [13] \\ 10 \times 6 = 60 = 4 \times 13 + 8 \equiv 8 & [13] \\ 11 \times 6 = 66 = 5 \times 13 + 1 \equiv 1 & [13] \\ 12 \times 6 = 72 = 5 \times 13 + 7 \equiv 7 & [13] \end{cases}$

So $y = \overline{11}$ answers the question $(\overline{11} \times \overline{6} = \overline{1} \text{ since } 11 \times 6 \equiv 1 \text{ [13]})$

3. At first, since $(\mathbb{Z}/13\mathbb{Z}, +)$ is a group, (E) is equivalent to

(E)
$$\overline{6} \times x = \overline{2} - \overline{7} = \overline{2 - 7} = \overline{-5} = \overline{-1 \times 13 + 8} = \overline{8}$$

By multiplying both sides of (E) with $\overline{11}$, we get

(E)
$$\overline{11} \times (\overline{6} \times x) = \overline{11} \times \overline{8}$$

 $(\overline{11} \times \overline{6}) \times x = \overline{11} \times \overline{8}$ (by using associativity of \times)
 $\overline{1} \times x = \overline{88}$ (from the result of the previous question)
 $x = \overline{6 \times 13 + 10}$ (since $\overline{1}$ is the identity element for \times)
 $x = \overline{10}$

Finally (E) has an unique solution in $\mathbb{Z}/13\mathbb{Z}$ which is $x = \overline{10}$.

4. Since 11 is a prime number, every element in $\mathbb{Z}/11\mathbb{Z}$ distinct from $\overline{0}$ has an inverse element for the multiplication. In particular $\overline{2} \times \overline{6} = \overline{2 \times 6} = \overline{12} = \overline{1 \times 11 + 1} = \overline{1}$. Therefore we get in $\mathbb{Z}/11\mathbb{Z}$

$$(E) \quad 2 \times (6 \times x) = 2 \times (2 - 7)$$
$$(\overline{2} \times \overline{6}) \times x = \overline{2 \times -5}$$
$$\overline{1} \times x = \overline{-10}$$
$$x = \overline{-1 \times 11 + 1}$$
$$x = \overline{1}$$

Consequently (E) has an unique solution in $\mathbb{Z}/11\mathbb{Z}$ which is $x = \overline{1}$.