
Chapter 1

Algebraic structures

1.1 Group

1.1.1 Definitions and examples
Definition 1.1 (Binary operation)

A binary operation (or binary law) on a nonempty set S is a map from S × S to S. Such a
binary operation is usually denoted

? : S × S −→ S

(a, b) 7−→ a ? b

Example : The set N of all natural numbers comes with the binary operation “addition of two numbers”.

+ : N× N −→ N
(a, b) 7−→ a+ b

Example : Similarly, the addition provides a binary operation on the set Z of all integers.

+ : Z× N −→ Z
(a, b) 7−→ a+ b

Moreover this binary operation satisfies the following properties

i) ∀(a, b, c) ∈ Z3, (a+ b) + c = a+ (b+ c) = a+ b+ c

ii) 0 ∈ Z is such that ∀a ∈ Z, a+ 0 = 0 + a = a

iii) ∀a ∈ Z, ∃b ∈ Z/ a+ b = b+ a = 0 (actually b = −a, the opposite number of a)

Example : Let B be the set of all bijective functions from the segment [0, 1] to itself.

B = {f : [0, 1]→ [0, 1] / f bijective}

Notice this set is nonempty (for instance Id[0,1] = (x 7→ x) ∈ B). The composition of functions provides
a binary operation on B.

◦ : B × B −→ B
(f, g) 7−→ f ◦ g

Indeed f ◦ g is well in B since f ◦ g : [0, 1] → [0, 1] is bijective as composition of bijective functions.
Moreover this binary operation satisfies the following properties
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i) ∀(f, g, h) ∈ B3, (f ◦ g) ◦ h = f ◦ (g ◦ h) = f ◦ g ◦ h
ii) Id[0,1] ∈ B is such that ∀f ∈ B, f ◦ Id[0,1] = Id[0,1] ◦f = f

iii) ∀f ∈ B, ∃g ∈ B/ f ◦ g = g ◦ f = Id[0,1] (actually g = f−1, the bijective inverse function of f)

Definition 1.2 (Group)

Let (G, ?) be a nonempty set with a binary operation. (G, ?) is said to be a group if it satisfies
each of the following group axioms

i) Associativity: ∀(a, b, c) ∈ G3, (a ? b) ? c = a ? (b ? c) = a ? b ? c

ii) Identity element: ∃e ∈ G/ ∀a ∈ G, a ? e = e ? a = a (e is called identity element)

iii) Inverse element: ∀a ∈ G, ∃a′ ∈ G/ a ? a′ = a′ ? a = e (a′ is called inverse element of a)

Examples : (Z,+) and (B, ◦) are groups whose identity elements are respectively 0 ∈ Z and Id[0,1] ∈ B.

Definition 1.3 (Abelian group)
A binary operation ? on a nonempty set S is said commutative if

∀(a, b) ∈ S2, a ? b = b ? a

An abelian group (or commutative group) is a group (G, ?) for which its binary operation ?
is commutative.

Example : (Z,+) is an abelian group since the addition of numbers is commutative.

Example : (B, ◦) is not abelian since ∃(f, g) ∈ B2/ f ◦ g 6= g ◦ f . For instance, consider f = (x 7→ x2) ∈ B
(its associated inverse element is f−1 = (y 7→ √y) ∈ B) and g = (x 7→ 1−x) ∈ B (its associated inverse
element is g−1 = (x 7→ 1− x) = g ∈ B). Then

∀x ∈ [0, 1],

{
f ◦ g(x) = f(1− x) = (1− x)2 = 1− 2x+ x2

g ◦ f(x) = g(x2) = 1− x2

So f ◦ g 6= g ◦ f (for instance at x = 1
2).

Further examples :

a) Additive groups: (Z,+) ⊂ (Q,+) ⊂ (R,+) ⊂ (C,+) are abelian groups.

b) Multiplicative groups: (Q∗,×) ⊂ (R∗,×) ⊂ (C∗×) are abelian groups. The same goes for
(R∗+,×) (but not for R∗− because the multiplication is not a binary operation on this set).

Proof : For instance for (R∗,×) :
1. × is a binary operation on R∗ since the multiplication of two real numbers not equal to 0

remains a real number not equal to 0.
2. × is associative: ∀(a, b, c) ∈ (R∗)3, (ab)c = a(bc) = abc

3. 1 ∈ R∗ is identity element: ∀a ∈ R∗, a× 1 = 1× a = a

4. Every real number a not equal to 0 has a multiplicative inverse 1
a ∈ R∗ which is inverse

element of a (since a× 1
a = 1

a × a = 1).
5. Finally the group is abelian since the multiplication of numbers is commutative.
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c) Counterexamples (N,+) is not a group since 1 ∈ N but there is no positive integer a ∈ N such
that 1 + a = a+ 1 = 0 (actually −1 /∈ N). The same goes for (Z− {0},×) since 2 ∈ Z but 1

2 /∈ Z.

Proposition 1.4

Let (G, ?) be a group. Then the following properties hold

1. The identity element e ∈ G is unique.

2. For any element a ∈ G, the inverse element of a in (G, ?) is unique, denoted a−1.

3. Simplifications are possible: ∀(a, b, c) ∈ G3,

{
a ? b = a ? c =⇒ b = c
b ? a = c ? a =⇒ b = c

4. ∀(a, b) ∈ G2, (a ? b)−1 = b−1 ? a−1

Proof : 1. By contradiction, assume e1 and e2 in G are identity elements for ?. Then

∀a ∈ G,
{
a ? e1 = e1 ? a = a
a ? e2 = e2 ? a = a

a = e2 in the first line gives e2 ? e1 = e1 ? e2 = e2.
a = e1 in the second line gives e1 ? e2 = e2 ? e1 = e1.
Consequently e1 = e1 ? e2 = e2, that is all identity elements must be equal. In other words
there is only one identity element.

2. Similarly, given any element a ∈ G, assume a′ and a′′ in G are inverse elements of a. Then{
a ? a′ = a′ ? a = e
a ? a′′ = a′′ ? a = e

Using the identity element e and the associativity of binary operation ?, we get:

a′ = a′ ? e = a′ ? (a ? a′′) = (a′ ? a) ? a′′ = e ? a′′ = a′′

Thus, there is only one inverse element of a.

3. Using the inverse element of a and the associativity, we get:

a ? b = a ? c =⇒ a−1 ? (a ? b) = a−1 ? (a ? c)

=⇒ (a−1 ? a) ? b = (a−1 ? a) ? c

=⇒ e ? b = e ? c

=⇒ b = c

The same goes for the second simplification.

4. We need to check the axiom of inverse element in Definition 1.2.{
(a ? b) ? (b−1 ? a−1) = a ? (b ? b−1) ? a−1 = a ? e ? a−1 = a ? a−1 = e
(b−1 ? a−1) ? (a ? b) = b−1 ? (a−1 ? a) ? b = b−1 ? e ? b = b−1 ? b = e

So b−1 ? a−1 is the inverse element of the element a ? b.

Example : If f and g are two bijective functions from the segment [0, 1] to itself then (f ◦g)−1 = g−1 ◦f−1
(which is not necessary equal to f−1 ◦ g−1 since composition of functions is not a commutative binary
operation).

Sébastien Godillon



4 CHAPTER 1. ALGEBRAIC STRUCTURES

1.1.2 Subgroup

Example : Consider the abelian group (Z,+) and the following subsets

E = {even numbers} = {2k, k ∈ Z}
O = {odd numbers} = {2k + 1, k ∈ Z}

We have ∀(a, b) ∈ E , a+ b ∈ E (if a = 2k and b = 2k′ then a+ b = 2k′′ with k′′ = k + k′ ∈ Z) but it is
no longer true in O. In other words, + is a binary operation on E but not on O.

Definition 1.5 (Subgroup)

Let (G, ?) be a group and H ⊂ G be a nonempty subset. (H, ?) is a subgroup of (G, ?) if it
satisfies each of the following subgroup axioms

i) ? is a binary operation on H

ii) (H, ?) is a group

Example : For any group (G, ?) with identity element e, ({e}, ?) is a subgroup of (G, ?) called the trivial
subgroup.

Proposition 1.6

Let (G, ?) be a group and H ⊂ G be a nonempty subset. (H, ?) is a subgroup of (G, ?) if and
only if it satisfies the following condition

∀(a, b) ∈ H2, a ? b−1 ∈ H

Proof : Necessary. Let a and b be two elements in H. The axiom of inverse element in Definition
1.2 gives b−1 ∈ H. And because ? is a binary operation on H, we get a ? b−1 ∈ H.

Sufficient. We need to check that each axiom from Definition 1.2 is satisfied for (H, ?) and ? is a
binary operation on H.

1. The axiom of associativity for (H, ?) comes directly from that one satisfied by (G, ?).
2. Denote e ∈ G the identity element of (G, ?). Since H is nonempty, there exists an element

a ∈ H. It follows e = a ? a−1 ∈ H. Consequently there exists an identity element in
(H, ?) or equivalently, the axiom of identity element is checked for (H, ?).

3. Now the inverse element in (G, ?) of any a ∈ H satisfy a−1 = e ? a−1 ∈ H (since e ∈ H).
In particular any element a ∈ H has an inverse element in (H, ?) or equivalently, the
axiom of inverse element is checked for (H, ?).

4. Finally for every elements a and b in H, we get a ? b = a ? (b−1)−1 ∈ H (since b−1 ∈ H).
In other words, ? is well a binary operation on H.

Remark : In practice, it is more convenient to use Proposition 1.6 to show that (H, ?) is a subgroup of
(G, ?) than Definition 1.5

Examples : (Z,+) is a subgroup of (Q,+), (R,+) and (C,+). (Q,+) is a subgroup of (R,+) and (C,+).
(R∗+,×) is a subgroup of (R∗,×) and (C∗,×).
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Proposition 1.7
For every positive integer n ∈ N∗, consider the following subset of Z

nZ = {multiples of n} = {nk, k ∈ Z}

Then (nZ,+) is a subgroup of (Z,+).

Proof : nZ is well a nonempty subset of Z (for instance 0 ∈ nZ). Let a = nk and b = nk′ be two
elements in nZ. Then

a+ (−b) = (nk) +
(
−(nk′)

)
= n(k − k′) ∈ nZ

Hence, the result follows from Proposition 1.6.

Example : E = {even numbers} = 2Z is a subgroup of Z.

Further examples :

a) Consider the following set of all complex numbers with absolute value 1 (that is the unital circle in
the complex plane)

T = {z ∈ C / |z| = 1}

Then (T,×) is a subgroup of (C∗,×) called the circle group.

Proof : If |z| = 1 for a complex number z ∈ C then z 6= 0. Moreover 1 ∈ T. So T is a nonempty
subset of C∗. Now using the claims that the absolute value of the multiplicative inverse of a
complex number is the multiplicative inverse of its absolute value and the absolute value of the
product of two complex numbers is equal to the product of their absolute values, we get

∀(z, w) ∈ T2, |z × w−1| = |z|
|w|

= 1

The conclusion follows with Proposition 1.6.

b) For every positive integer n ∈ N∗, consider the following subset of C

Rn = {nth root of unity} = {z ∈ C / zn = 1}

Then (Rn,×) is a subgroup of (T,×) (and of (C∗,×) as well). It is finite with cardinality n.

Proof : If zn = 1 for a complex number z ∈ C then |z|n = |zn| = 1 and consequently |z| = 1
(because |z| ∈ R+). Moreover 1 is a root of unitaly for every power n ∈ N∗. So Rn is a nonempty
subset of T. Actually Rn may be written as follows

Rn =
{
z = eı

2kπ
n , k ∈ {0, 1, . . . , n− 1}

}
where ∀θ ∈ R, eıθ = cos(θ) + ı sin(θ)

In particular, Rn is a finite set with cardinality n. We conclude as in the previous proof for (T,×)
since the exponentiation function z 7→ zn satisfies the same required properties as the absolute
value for complex numbers.

Sébastien Godillon
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1.1.3 Group homomorphism
Definition 1.8 (Group homomorphism)

Let (G, ?) and (H, ·) be two groups. A group homomorphism from (G, ?) to (H, ·) is a
function ϕ : G→ H such that

∀(a, b) ∈ G2, ϕ(a ? b) = ϕ(a) · ϕ(b)

Moreover

• If a group homomorphism ϕ : G → H is a bijection, then it is called a group isomor-
phism.

• If ψ : G → G is a group homomorphism from (G, ?) to itself, then it is called a group
endomorphism. If furthermore ψ is bijective and hence a group isomorphism, it is called
a group automorphism.

Remark : If ϕ : G → H is a group isomorphism, then its bijective inverse ϕ−1 : H → G is also a group
homomorphism.

Proof : Let a and b be two elements in H. Since ϕ is a surjective function, there exist two elements
a′ and b′ in G such that a = ϕ(a′) and b = ϕ(b′). Then

ϕ−1(a · b) = ϕ−1(ϕ(a′) · ϕ(b′)) = ϕ−1(ϕ(a′ ? b′)) = a′ ? b′ = ϕ−1(a) ? ϕ−1(b)

Some examples :

a) The constant function ϕ : a 7→ ϕ(a) = eH equal to the identity element of (H, ·) is a group
homomorphism from (G, ?) to (H, ·) (even onto the trivial subgroup ({eH}, ·)).

b) The identity function ϕ = IdG = (a 7→ a) is a group automorphism of (G, ?).

c) Given n ∈ Z, ϕn : Z → Z, k 7→ nk is a group endomorphism from (Z,+) to itself and a group
isomorphism from (Z,+) onto its subgroup (nZ,+).

d) Given λ ∈ R, ϕλ : R→ R, x 7→ λx is a group endomorphism from (R,+) to itself. Moreover it is a
group automorphism if and only if λ 6= 0.

Proof :
∀(x, y) ∈ R2, ϕλ(x+ y) = λ(x+ y) = λx+ λy = ϕλ(x) + ϕλ(y)

And ϕλ is a bijective function over R if and only if λ 6= 0 (in this case, the associated bijective
inverse is (x 7→ x/λ) = ϕ1/λ).

e) exp : R→ R∗+, x 7→ exp(x) is a group isomorphism from (R,+) to (R∗+,×).

Proof :
∀(x, y) ∈ R2, exp(x+ y) = exp(x) exp(y)

And exp : R→ R∗+ is a bijective function (whose bijective inverse is ln : R∗+ → R).
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1.2 Ring

1.2.1 Definitions and examples
Definition 1.9 (Ring)

Let (R,+,×) be a nonempty set with two binary operations denoted + and ×. (R,+,×) is
said to be a ring if it satisfies each of the following ring axioms

i) (R,+) is an abelian group

ii) the binary operation × is associative:

∀(a, b, c) ∈ R3, (a× b)× c = a× (b× c) = a× b× c

iii) the binary operation × is distributive over the binary operation +:

∀(a, b, c) ∈ R3,

{
a× (b+ c) = (a× b) + (a× c)
(b+ c)× a = (b× a) + (c× a)

Moreover a ring (R,+,×) is said

• unital if there exists an identity element for the binary operation ×:

∃e ∈ R/ ∀a ∈ R, a× e = e× a = a

• commutative if the binary operation × is commutative:

∀(a, b) ∈ R2, a× b = b× a

We denote

• 0R the identity element for the binary operation +, called the additive identity

• 1R the identity element for the binary operation × in case (R,+,×) is unital, called the
multiplicative identity

• −a the inverse element of an element a ∈ R for the binary operation +, called the additive
inverse (or opposite)

Example : (Z,+,×) ⊂ (Q,+,×) ⊂ (R,+,×) ⊂ (C,+,×) are commutative unital rings.

Proof : For instance for (Q,+,×):

1. + and × are binary operations on Q: ∀(a, b) ∈ Q2, a+ b ∈ Q and ab ∈ Q
2. (Q,+) is an abelian group.
3. × is associative on Q: ∀(a, b, c) ∈ Q3, (ab)c = a(bc) = abc

4. × is distributive over +: ∀(a, b, c) ∈ Q3, a(b+ c) = (ab) + (ac)

5. × has a multiplicative identity in Q: 1Q = 1 since ∀a ∈ Q, a× 1 = 1× a = a

6. × is commutative on Q: ∀(a, b) ∈ Q2, ab = ba

Sébastien Godillon
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Example : Let F be the set of all functions from R to itself.

F = {f : R→ R}

For every functions f and g in F , the function f+g ∈ F is defined by ∀x ∈ R, (f+g)(x) = f(x)+g(x)
(using addition of real numbers) and the function f × g ∈ F by ∀x ∈ R, (f × g)(x) = f(x)g(x) (using
multiplication of real numbers). Then (F ,+,×) is a commutative unital ring.

Proof : 1. + and × are binary operations on F by definition.
2. (F ,+) is an abelian group: the associativity and the commutativity come from those ones of

(R,+), the additive identity is the constant function 0F : x 7→ 0 and the additive inverse of a
function f ∈ F is the function −f defined by −f : x 7→ −x.

3. × is associative on R, so the same does on F as well.
4. × is distributive over + on R, so the same does on F as well.
5. The constant function 1F : x 7→ 1 is a multiplicative identity for × in F .
6. × is commutative on R, so the same does on F as well.

Proposition 1.10

Let (R,+,×) be a ring. Then the following properties hold

1. If (R,+,×) is unital, then the multiplicative identity 1R ∈ R is unique.

2. ∀a ∈ R, a× 0R = 0R × a = 0R

3. If (R,+,×) is unital, then ∀a ∈ R, (−1R)× a = a× (−1R) = −a

4. ∀(a, b) ∈ R2, (−a)× b = a× (−b) = −(a× b)

Proof : 1. Actually the same proof as for the first property from Proposition 1.4 still holds.

2. Using the distributivity of + over × and the additive identity 0R, we get:

0R × a+ 0R × a = (0R + 0R)× a = 0R × a = 0R + 0R × a

Now a simplification on each side by 0R×a (see Proposition 1.4) gives 0R = 0R×a as needed.
The same goes for a× 0R.

3. We have

a+ (−1R)× a = 1R × a+ (−1R)× a = (1R + (−1R))× a = 0R × a = 0R

Consequently (−1R) × a is the additive inverse of the element a (since (R,+) is an abelian
group whose its additive identity is 0R). The same goes for a× (−1R).

4. We have
a× b+ (−a)× b = (a+ (−a))× b = 0R × b = 0R

The conclusion follows.

Remark : In particular, the second point of the previous proposition shows that the additive identity 0R of
a ring (R,+,×) has no multiplicative inverse: there is no element a ∈ R such that 0R×a = a×0R = 1R.
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Definition 1.11 (Subring)

Let (R,+,×) be a ring and T ⊂ R be a nonempty subset. (T,+,×) is a subring of (R,+,×)
if it satisfies each of the following subring axioms

i) (T,+) is a subgroup of (R,+)

ii) × is a binary operation on T

In this case, (T,+,×) is a ring.

Trivial example : For any ring (R,+,×), ({0R},+,×) is a subring called the trivial subring.

Examples : (Z,+,×) is a subring of (Q,+,×), (R,+,×) and (C,+,×). For every positive integer n ∈ N∗,
(nZ,+,×) is a subring of (Z,+,×) which is not unital as soon as n > 2 (since 1 /∈ nZ).

Proof : For instance for (nZ,+,×):
1. (nZ,+) is a subgroup of (Z,+) (see Proposition 1.7)
2. If a = nk and b = nk′ are two elements in nZ then a× b = (nk)× (nk′) = n(knk′) ∈ nZ. Hence,
× is a binary operation on nZ.

Definition 1.12 (Ring homomorphism)

Let (R,+,×) and (T,⊕,⊗) be two rings. A ring homomorphism from (R,+,×) to (T,⊕,⊗)
is a function ϕ : R→ T such that

∀(a, b) ∈ R2,

{
ϕ(a+ b) = ϕ(a)⊕ ϕ(b)
ϕ(a× b) = ϕ(a)⊗ ϕ(b)

Moreover

• If a ring homomorphism ϕ : R→ T is a bijection, then it is called a ring isomorphism.

• If ψ : R → R is a ring homomorphism from (R,+,×) to itself, then it is called a ring
endomorphism. If furthermore ψ is bijective and hence a ring isomorphism, it is called
a ring automorphism.

Remark : The same remark as for group isomorphism holds: the bijective inverse of any ring isomorphism
is also a ring homomorphism.

1.2.2 The rings Z/nZ
Remind the following result:
Theorem 1.13 (Division algorithm)

For any given two integers a and d with d 6= 0, there exist unique integers q and r such that{
a = qd+ r
0 6 r < |d|

The integer q is called the quotient, r the remainder, d the divisor and a the dividend.

Sébastien Godillon
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Fix a positive integer n ∈ N∗.
Definition 1.14 (Congruence modulo n)

Two integers a and b are said congruent modulo n if n divides their difference a− b, that is
if there exists an integer q such that a − b = qn (equivalently if the remainder of the division
algorithm with dividend a− b and divisor n is equal to 0). In this case, we write a ≡ b[n].

Remark : In particular, any integer a is congruent modulo n to its associated remainder r of the division
algorithm with dividend a and divisor n (since a− r = qn). Moreover if two integers a and b have the
same remainder r from the division algorithm with divisor n, then they are congruent modulo n (since
a = qn+ r and b = q′n+ r′ with r = r′ imply a− b = (q − q′)n).

Definition 1.15 (Congruence class)
For any given integer a ∈ Z, the congruence class modulo n of a is the following set

a = {integers congruent modulo n to a}
= {b ∈ Z / b ≡ a[n]}
= {. . . , a− 2n, a− n, a, a+ n, a+ 2n, a+ 3n, . . . }
= a+ nZ

Proposition 1.16

Let a and b be two congruence classes modulo n associated to two integers a and b. Then a
and b are equal if and only if a and b are congruent modulo n.

∀(a, b) ∈ Z2, a = b⇔ a ≡ b[n]

Proof : Necessary. If a = b then in particular b ∈ a that is b is congruent modulo n to a.

Sufficient. If b is congruent modulo n to a then there exists an integer q such that a = b + qn.
Consequently

a = a+ nZ = b+ qn+ nZ = b+ n(q + Z) = b+ nZ = b

Remark : In particular, for any given integer a ∈ Z, if r denotes the remainder of the division algorithm
with dividend a and divisor n then a = r.

Definition 1.17 (Z/nZ)
The set of all congruence classes modulo n is denoted by Z/nZ (read “Z over nZ”).

Z/nZ = {congruence classes modulo n}
= {a, a ∈ Z}
= {congruence classes modulo n of the remainders

from the division algorithm with divisor n}
= {r, r ∈ Z and 0 6 r < n}
= {0, 1, . . . , n− 1}

It is a finite set with cardinality n.
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Example : For n = 2, Z/2Z = {0, 1}. For instance 2 = 0 and 5 = 1 (equivalently we may write 2 ≡ 0[2]
and 5 ≡ 1[2]). Actually {

a even =⇒ a = 0
a odd =⇒ a = 1

Example : For n = 3, Z/3Z = {0, 1, 2}. For instance 6 = 0 (or 6 ≡ 0[3]) and 13 = 1 (or 13 ≡ 1[3]) because
13 = 4× 3 + 1.

Definition 1.18 (Addition and multiplication in Z/nZ)
Two binary operations on Z/nZ denoted by + and × are defined as follows (using addition and
multiplication of integers)

∀(r, r′) ∈ {0, 1, . . . , n− 1}2,
{
r + r′ = r + r′

r × r′ = rr′

Proposition 1.19

∀(a, b) ∈ Z2,

{
a+ b = a+ b

a× b = ab

Proof : From Theorem 1.13, a = qn+ r and b = q′n+ r′ for some integers q, q′, r, r′ with 0 6 r, r′ < n.

• We have (a + b) − (r + r′) = (q + q′)n. So (a + b) and (r + r′) are congruent modulo n. It
follows from Proposition 1.16 that

a+ b = r + r′ = r + r′ = a+ b

• We have
ab = (qn+ r)(q′n+ r′) = qq′n2 + (qr′ + q′r)n+ rr′

Thus ab− rr′ = (qq′n+ qr′+ q′r)n that is ab and rr′ are congruent modulo n. It follows from
Proposition 1.16 that

ab = rr′ = r × r′ = a× b

Corollary 1.20

(Z/nZ,+,×) is a commutative unital ring whose identity elements are respectively 0 for the
binary operation + and 1 for the binary operation ×.

Proof : Proposition 1.19 gives everything we need from the fact that (Z,+,×) is a commutative unital
ring whose identity elements are respectively 0 and 1.

Example : Some computations in Z/6Z = {0, 1, 2, 3, 4, 5}:

a) 15 = 3 since 15 = 2× 6 + 3

b) 4 + 5 = 4 + 5 = 9 = 3 + 6 = 3

c) 4 + 2 = 6 = 0 thus −4 = 2

d) 5× 4 = 5× 4 = 20 = 3× 6 + 2 = 2

Remark : In Z/6Z, we have 3× 2 = 6 = 0 but 3 6= 0 and 2 6= 0.

Sébastien Godillon
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1.3 Field
Definition 1.21

Let (F,+,×) be a nonempty set with two binary operations. (F,+,×) is said to be a field if it
satisfies each of the following field axioms

i) (F,+,×) is an unital ring

ii) every element except 0F has an inverse element in F for the binary operation ×:

∀a ∈ F − {0F}, ∃a−1 ∈ F/ a× a−1 = a−1 × a = 1F

Moreover a field (F,+,×) is said commutative if the binary operation × is commutative:

∀(a, b) ∈ F 2, a× b = b× a

The same notations as for ring (0F , 1F and −a) are used and we denote a−1 the inverse element
of an element a ∈ F − {0F} for the binary operation × (called the multiplicative inverse).

Remark : Equivalently (F,+,×) is a field if and only if it satisfies each of the following conditions

i) (F,+) is an abelian group (whose its additive identity is denoted by 0F )

ii) (F − {0F },×) is a group

iii) the binary operation × is distributive over the binary operation +

Examples : (Q,+,×) ⊂ (R,+,×) ⊂ (C,+,×) are commutative fields.

Counterexample : (Z,+,×) is not a field since 2 ∈ Z − {0} has no multiplicative inverse in Z: there is
no integer a ∈ Z such that 2a = 1 (equivalently (Z− {0},×) is not a group).

Proposition 1.22

Let (F,+,×) be a field. Then

∀(a, b) ∈ F 2, a× b = 0F =⇒ either a = 0F or b = 0F

Proof : Assume a 6= 0F . Consequently, there exists a multiplicative inverse a−1 ∈ F and we get:

b = 1F × b = (a−1 × a)× b = a−1 × (a× b) = a−1 × 0F = 0F

Remark : In particular, if there exist two elements a and b in a ring (R,+,×) such that a × b = 0R
but a 6= 0R and b 6= 0R (such elements are called zero divisors) then (R,+,×) is not a field. More
precisely, any zero divisor does not have multiplicative inverse.

Example : (Z/6Z,+,×) is not a field (since 3× 2 = 0 but 3 6= 0 and 2 6= 0).

Theorem 1.23

Let n ∈ N∗ be a positive integer. Then (Z/nZ,+,×) is a commutative field if and only if n is
a prime number.
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Proof : Necessary. The proof is the same as the previous example. By contradiction, assume that
n ∈ N∗ is not a prime number. In other words, there exist two integers p and q such that
1 < p, q < n and n = pq. Then p × q = pq = n = 0 but p 6= 0 and q 6= 0. That is a
contradiction with Proposition 1.22.

Sufficient. Assume n is a prime number and let r ∈ Z/nZ be a congruence class not equal to the
congruence class 0. We may assume that 0 < r < n. In particular, r and n are relatively
prime. Remind the following result:

Theorem 1.24 (Bézout’s identity)

If two integers a and b are relatively prime then there exist integers x and y such that

ax+ by = 1

Here we get two integers x and y such that rx+ ny = 1. Consequently

r × x = rx = 1− ny = 1

In other words, x is the multiplicative inverse of r. So, any congruence class in Z/nZ not
equal to 0 has a multiplicative inverse.

Example : In Z/7Z, the multiplicative inverse of 2 is 4 since 2 × 4 = 2× 4 = 8 = 1 (and then the
multiplicative inverse of 4 is 2). Moreover, we have 3

−1
= 5 (since 3 × 5 = 15 = 1 + 2× 7 = 1) and

6
−1

= 6 (since 6× 6 = 36 = 1 + 5× 7 = 1).
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