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Field:

Motivation:

Questions:

Main tools:

Introduction Background
The McMullen's example
the Persian carpet

Study of holomorphic dynamical systems

Find some examples of rational maps
with particular complicated dynamics

1- How to construct rational maps
from dynamical informations ?
2-  Which kind of rational maps
is it possible to construct 7

Quasiconformal surgery and Thurston theory
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Introduction Background
The McMullen's example
the Persian carpet

Let f : C — C be a rational map of degree d > 2.

For every zp € C, consider its forward orbit {z, = F°"(z) / n > 1}.

f f f f
20> Z1 > Zo > Z3 — ...
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Introduction Background
The McMullen's example
the Persian carpet

Let f : C — C be a rational map of degree d > 2.

For every zp € C, consider its forward orbit {z, = F°"(z) / n > 1}.

Definition (Fatou and Julia sets)

o the Fatou set is
F(f)={z € @/(fo”),,>1 is a normal family at z}

o the Julia set is
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Introduction Background
The McMullen's example
the Persian carpet

Theorem

Let f : C — C be a rational map of degree d > 2.

J(f) is a nonempty fully invariant closed and perfect set.
Furthermore either

e J(f) is connected,

@ or else J(f) has uncountably many connected components.
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Introduction Background
The McMullen's example
the Persian carpet

Theorem

Let f : C — C be a rational map of degree d > 2.
J(f) is a nonempty fully invariant closed and perfect set.
Furthermore either

e J(f) is connected,

@ or else J(f) has uncountably many connected components.
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Introduction Background
The McMullen's example
the Persian carpet

Theorem

Let f : C — C be a rational map of degree d > 2.
If there exists an attracting fixed point z., of f such that every
critical point of f lies in the immediate attracting bassin of z, then

3 a homeomorphism ¢/ J(f)

o o

Yy

where
o Yy=1{1,2,...,d}N is a Cantor set

0 ¢ = (g0e162...) = o(e) = (e162e3...) is the shift map

Sébastien Godillon Construction of rational maps with prescribed dynamics



Introduction Background
The McMullen's example
the Persian carpet

Example (McMullen)
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Introduction Background
The McMullen's example
the Persian carpet

Example (McMullen)

fcoc acts on Jcoc = {J Julia component of J(fcoc)} =~ U Co.

ac€Y o

fcoc

3 a homeomorphism ¢/ Jcoc Jcoc

4| |

2, 2,
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Background

Introduction
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Introduction Background
The McMullen's example
the Persian carpet

Example (McMullen)
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Example (McMullen)
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Introduction Background
The McMullen's example
the Persian carpet

Example (McMullen)
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Introduction Background
The McMullen's example
the Persian carpet

fcoc

3 a homeomorphism ¢ /| Jcoc Jcoc

| |

Jc Jc

TC
where

_ 3x if x € [0, 3]
OTC.[O,I]—>[O,1],X|—>{3(1_X) ifxe[%,l]
>

o and Jc={x€[0,1]/Vn >0, 72"(x) € [0,3] U [3,1]}
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Introduction Background
The McMullen's example
the Persian carpet

Consider P, : z — z2 + ¢ where ¢ ~ —0.157... +1.032...i

c1 1

,.{ c3 <3

Let Ju be the intersection between J(P.) and the Hubbard tree H
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Introduction Background
The McMullen's example
the Persian carpet

Theorem (Persian carpet)

There exists a rational map f : C — C such that

3 a homeomorphism ¢/ Jy/(f) TIn(f)
cpi lcp
jH ..77-[

where Jy(f) is a subset of Julia components of f.
Moreover,

@ there exists only one fixed Julia component J,
o VJ e Ju(f)— UnZO(fO”)_l(Ja), J is a Jordan curve
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Introduction Background
The McMullen's example
the Persian carpet

Figure: A Persian carpet
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A Hubbard tree
From a tree to a Persian carpet Unfolding
Quasiconformal surgery

Consider the following abstract Hubbard tree # = (T, 7).

° \r\/co\
o

( -
P,
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A Hubbard tree
From a tree to a Persian carpet Unfolding

Quasiconformal surgery

c1 C1

£ €2

t &
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A Hubbard tree
From a tree to a Persian carpet Unfolding
Quasiconformal surgery

We equip the Hubbard tree H with a weight function w.
1
AN
O
2 \/
)

€3

ébastien Godillon Construction of rational maps with prescribed dynamics



A Hubbard tree
From a tree to a Persian carpet Unfolding
Quasiconformal surgery

We equip the Hubbard tree H with a weight function w.

T(ea,co) €a,c1 01 0 O
T(ea C1) — ea C2 - O 0 % 0
’ ’ gives M=
T(ea,cz) = €a,c0 Y €cp,c3 % 0 0 %
7—(eco,cza.) = €ua,1 U €a,co 1 1 0 O
with )\(H) = )\(/\/’) ~0918<1
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A Hubbard tree
From a tree to a Persian carpet Unfolding
Quasiconformal surgery
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A Hubbard tree
From a tree to a Persian carpet Unfolding
Quasiconformal surgery

1:1

2:1
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A Hubbard tree
From a tree to a Persian carpet Unfolding
Quasiconformal surgery

Question: How to construct a rational map f : C — C “encoded”
by the unobstructed weighted Hubbard tree (#,w) ?
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A Hubbard tree
From a tree to a Persian carpet Unfolding
Quasiconformal surgery

Question: How to construct a rational map f : C — C “encoded”
by the unobstructed weighted Hubbard tree (#,w) ?

Answer: By quasiconformal surgery !
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A Hubbard tree
From a tree to a Persian carpet Unfolding
Quasiconformal surgery
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A Hubbard tree
From a tree to a Persian carpet Unfolding

Quasiconformal surgery

C142>C242>C3

1
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A Hubbard tree
From a tree to a Persian carpet Unfolding
Quasiconformal surgery

2 2
a=1——0=0—"—=c =0

?:(z»—>z2)o z—— =z~
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From a tree to a Persian carpet Unfolding

2 2
C]_:]_—>C2=OO—>C3:0

1

?:(z»—>zz)o<z»—>1iz> :(ZHﬁ)

mg (——* UB(©) ./
0-)
\{
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A Hubbard tree
From a tree to a Persian carpet Unfolding
Quasiconformal surgery

Step 1 - Cutting off

Lemma (equipotentials layout)

Given any positive constant C > 0, there exist five equipotentials
Bo, B1, B2, 7—3 and .3 such that

(i) Bo C B(0), B C B(1) and B2 C B(2)
(i) 7-3,7+3 C B(0) and |¢o(Bo)| > |po(7-3)| > [do(7+3)]
(iii) the following inequalities hold

mod(as, 1) < mod(ao, fo)
3mod(az, 52) < mod(az,pr) (1)
3 mod(ao, Bo) + 5 mod(y-3,743) < mod(az, B2)
mod(ag, fo) + mod(ai, f1) + C < mod(y—3,7+3)
2 mod(ao, 743) < mod(az, B2) (2)
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A Hubbard tree
From a tree to a Persian carpet Unfolding
Quasiconformal surgery

+3

—1

*3c=0
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A Hubbard tree
From a tree to a Persian carpet Unfolding
Quasiconformal surgery

Sketch of proof for equipotentials layout Lemma.

Compare
mod(a1, /1) < mod(ag, Bo)
% mod(ag, ﬁz) < mod(al, ﬁl) (1)
L mod(ao, fo) + s mod(y_3,7+3) < mod(az, o)
mod(ao, fo) + mod(az,f1) + C < mod(y-3,7+3)
01 0 O
: 0010
with M = 2
2 00 3
1 1 0 O
Furthermore A(M) < 1 implies 3x € R* /x > 0 and Mx < x O
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A Hubbard tree
From a tree to a Persian carpet Unfolding
Quasiconformal surgery

Step 2 - The branching piece
Define

F|<E—D(0,B(),1) - '[I@—D(Oﬁé,l)

D(0,B5,1)
c=1

) T 0 B
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A Hubbard tree
From a tree to a Persian carpet Unfolding
Quasiconformal surgery

Step 3 - Preimage of the branching piece

Lemma (inverse Grotzsch's inequality - Cui Guizhen and Tan Lei)
C > O/V,Bo, 51, mOd(ﬁl, ﬂo) < mod(ao, ﬂo) + mod(al, ﬂl) +C

(1) = mod(ao, Bo) + mod(aq, f1) + C < mod(vy—_3,7+3)
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A Hubbard tree
From a tree to a Persian carpet Unfolding
Quasiconformal surgery

Step 3 - Preimage of the branching piece

Lemma (inverse Grotzsch's inequality - Cui Guizhen and Tan Lei)
C > O/V,Bo, 51, mOd(ﬁl, ﬁo) < mod(ao, ﬁo) + mod(al, ﬂl) +C

B34, B30 C A(v-3,743) / mod(BL3 1, B 30) = mod(B1, Bo)

BU Y,3 -.3,1 13-;3,0 Yﬂ

N D N D et
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A Hubbard tree
From a tree to a Persian carpet Unfolding
Quasiconformal surgery

Define F on A(B. 34,5 3,) to be a biholomorphic map such that
o F maps A(B.3 1,8} 3,) onto A(B1, Bo)

@ F extends diffeomorphically to A(6L3’17ﬁ’+370)
mapping 3”5 ; onto B1 and f', 3, onto o

= A, Blay)
VRN
'0,1 B»‘3,1 J‘r3,0
% ) )] IBIBE)
Vs Y,
& \?/
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A Hubbard tree
From a tree to a Persian carpet Unfolding
Quasiconformal surgery

Step 4 - Folding

/_N W =1
By, By N . T~ P

et (7)) i
0 -3 ; l/

ror+1/r —r+4+1/r

1
Flaons) =¥ oz 24 oy
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A Hubbard tree
From a tree to a Persian carpet Unfolding
Quasiconformal surgery

Extends quasiregularly F on A( 1, 80) U A(7-3,8"31)

A(Bo,i:B5,1)
/\ﬁ'
3,1

Biso

c;=0
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A Hubbard tree
From a tree to a Persian carpet Unfolding
Quasiconformal surgery

Step 5 - End with an end
Let 8,3 3 C A(B30,7+3) be a smooth curve.
Define F on D(¢&', 3 _3) to be a biholomorphic map such that

o F maps D(&', 3 _3) onto D(0,7-3)
o F extends diffeomorphically to D(&, 5 _3)
mapping &’,3 3 onto y_3
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A Hubbard tree
From a tree to a Persian carpet Unfolding
Quasiconformal surgery

Define F on D(0,743) to be any biholomorphic map such that
o F maps D(0,+3) onto D(p,C) € A(fo,_3) with F(0) = p
@ F extends diffeomorphically to D(0,~43)
mapping 43 onto ¢

Y.s)

Extends quasiregularly F on P(5 34,03 3,7+3)
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A Hubbard tree
From a tree to a Persian carpet Unfolding
Quasiconformal surgery

Final Step

@ F is holomorphic on an open set H C C

H = (@ - m) UJAB 3.1, 813.0) | AlBo, 7-3)

Step 2 Step 3 Step 4
U D(0',3,-3) U D(0,743)
Step 5

@ F extends quasiregularly to the complement Q = C—H

Q= A(56717 50) U A('Y—37 5/,3,1) U P(ﬁﬁr&oa 5;3,737 7+3)

Step 4 Step 5

o Jan open set A C H such that F(A) C A and F°?(Q) C A

A = A(Bo,7-3) U D(1, 1) U D(00, B2) U D(0,743)
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A Hubbard tree
From a tree to a Persian carpet Unfolding
Quasiconformal surgery

Quasiconformal surgery principle:
We may apply Morrey-Ahlfors-Bers theorem to get

3 a quasiconformal map ¢ with F-invariant dilatation

Therefore f = ¢ o F o =1 is a rational map.

T

<
-

T
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A Hubbard tree
From a tree to a Persian carpet Unfolding
Quasiconformal surgery
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Realization of post-critically finite maps
General statement

A collection of Persian carpets Concluding remarks

C1*2>C2$C3

1

: -~ 1
This ramification portrait is realized by f = [ z — ———
(1-2)?
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Realization of post-critically finite maps
General statement

A collection of Persian carpets Concluding remarks

Question:  Which kind of ramification portraits is realized
by post-critically finite rational maps 7
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Realization of post-critically finite maps
General statement

A collection of Persian carpets Concluding remarks

Question:  Which kind of ramification portraits is realized
by post-critically finite rational maps 7

Answer:  The Thurston's topological characterization !
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Realization of post-critically finite maps
General statement

A collection of Persian carpets Concluding remarks

Theorem (Thurton's topological characterization)

Let f : S? — S? be a ramified covering with |Pf| < oo
Then there exists a rational map f:C — C such that

() $—=—¢&
"R
o, p1 homeomorphisms / <2 - =
(i) o(Pr) = @1(P) = P¢
(i) o, 1 are isotopic rel. to P

if and only if f has no Thurston obstruction.
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Realization of post-critically finite maps
General statement

A collection of Persian carpets Concluding remarks

Topological part

Definition (N-cyclic ramification portrait of polynomial type)

A ramification portrait R = (2, P,o,v) is
N-cyclic ramification portrait of polynomial type if
® R is branch compatible: Vy € P, 3/, v(x) < deg(R)
@ Joo € QU P/ o(o0) = oo and v(oo) = deg(R)
® Yw € Q — {00}, w is o-periodic
@ P — {oo} is the union of exactly N disjoint periodic cycles
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Realization of post-critically finite maps
General statement

A collection of Persian carpets Concluding remarks

Topological part

Definition (N-cyclic ramification portrait of polynomial type)

A ramification portrait R = (2, P,o,v) is
N-cyclic ramification portrait of polynomial type if
® R is branch compatible: Vy € P, 3/, v(x) < deg(R)
@ Joo € QU P/ o(o0) = oo and v(oo) = deg(R)
® Yw € Q — {00}, w is o-periodic
@ P — {oo} is the union of exactly N disjoint periodic cycles

Theorem (topological realization)

Every N-cyclic ramification portrait of polynomial type
is realized by a ramified covering f : S*> — S?.
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Realization of post-critically finite maps
General statement
A collection of Persian carpets Concluding remarks

Sketch of proof for topological realization.
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Realization of post-critically finite maps
General statement

A collection of Persian carpets Concluding remarks

Analytical part

Theorem (polynomial criterion)

If a topological polynomial f has a Thurston obstruction then
(i) f has a Levy cycle T contained in the Thurston obstruction

(ii) there exist some post-critical points of f whose iterations
do not accumulate a critical point

Sébastien Godillon Construction of rational maps with prescribed dynamics



Realization of post-critically finite maps
General statement

A collection of Persian carpets Concluding remarks

Analytical part

Theorem (polynomial criterion)

If a topological polynomial f has a Thurston obstruction then
(i) f has a Levy cycle ' contained in the Thurston obstruction

(ii) there exist some post-critical points of f whose iterations
do not accumulate a critical point

Corollary (Levy's criterion)

Let f : S?> — S? be a topological polynomial with |Pf| < oo
If every critical point falls into a periodic cycle containing a critical
point then f has no Thurston obstruction.
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Realization of post-critically finite maps
General statement

A collection of Persian carpets Concluding remarks

Analytical part

Theorem (polynomial criterion)

If a topological polynomial f has a Thurston obstruction then
(i) f has a Levy cycle ' contained in the Thurston obstruction

(ii) there exist some post-critical points of f whose iterations
do not accumulate a critical point

Corollary (Levy's criterion)

Let f : S?> — S? be a topological polynomial with |Pf| < oo
If every critical point falls into a periodic cycle containing a critical
point then f has no Thurston obstruction.

Corollary (analytical realization)

Every N-cyclic ramification portrait of polynomial type
is realized by a polynomial f : S> — S?.
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Realization of post-critically finite maps
General statement

A collection of Persian carpets Concluding remarks

Let R be a N-cyclic ramification portrait of polynomial type.

G ) Pep-1)
ol (\Q/ Cny
o(ck,)

, @) (G o),
¢ &_// Cha
7(c2,)
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Realization of post-critically finite maps
General statement

A collection of Persian carpets Concluding remarks

Let R be a N-cyclic ramification portrait of polynomial type.

. (ck) . (cd) oepy-1)
o <\C2—// Cm
(cay)

) (c2) ) o(c2) plen,)
o <\C2_// Cny

(c3,)
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Realization of post-critically finite maps
General statement
Concluding remarks

A collection of Persian carpets

Let R be the following ramification portrait.

vp)=ilch) | i) ey 0 v(pi)=r(ch) |

1“\(_‘1—/6,71 pp > G
v(ca,

Upm)=0(c) . o) wepy) L Up)=en)

m<\cl—// Nm Pm ~ > G
v(cmm

o Na1 ~ N+1
N1 D(cf ™) ) ”(CnN“—l) N1

G \—/ nN+1

Aenyly)
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Realization of post-critically finite maps

General statement
A collection of Persian carpets Concluding remarks

Definition (admissible weighted Hubbard tree)

Such a ramification portrait R may be deduced from
a weighted Hubbard tree (#, w) such that

@ tree shape condition:
‘H is a starlike tree around an unique branched point «,
every p; is the endpoint of two exactly two edges
and every CL is an end

@ realization condition:

the associated sub-ramification portrait R

is a N-cyclic ramification portrait of polynomial type
@ Thurston condition:

(H, w) is unobstructed
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Realization of post-critically finite maps
General statement

A collection of Persian carpets Concluding remarks

Theorem (realization of admissible weighted Hubbard tree)

For every admissible weighted Hubbard tree (1, w)
there exists a rational map f : C — C such that

(i) f realizes the associated ramification portrait R
(ii) the Julia set J(f) is disconnected

Sébastien Godillon Construction of rational maps with prescribed dynamics



Realization of post-critically finite maps
General statement
A collection of Persian carpets Concluding remarks

Sketch of the proof.
First idea: Folding
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Realization of post-critically finite maps
General statement

A collection of Persian carpets Concluding remarks

Sketch of the proof.
First idea: Folding

(N TN

Second idea: Final Step
Use a result of Cui Guizhen and Tan Lei generalizing the Thurston's
theorem for some non-post-critically finite maps. Ol
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Realization of post-critically finite maps
General statement
A collection of Persian carpets Concluding remarks

Figure: Different motifs of Persian carpets
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Realization of post-critically finite maps
General statement
A collection of Persian carpets Concluding remarks

Figure: Different motifs of Persian carpets
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Realization of post-critically finite maps
General statement
A collection of Persian carpets Concluding remarks

Figure: Different motifs of Persian carpets
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Realization of post-critically finite maps
General statement

A collection of Persian carpets Concluding remarks

@ Enlarge the tree shape condition and the realization condition .
@ Encode the exchanging dynamics of Julia components.
o Extends continuously the encoding map « : Jy — H to C.
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Realization of post-critically finite maps
General statement

A collection of Persian carpets Concluding remarks

@ Enlarge the tree shape condition and the realization condition .
@ Encode the exchanging dynamics of Julia components.
o Extends continuously the encoding map « : Jy — H to C.

And more generally,
@ What about the unicity ?

@ What about the converse problem ?
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ization of post-critically finite maps
statement

A collection of Persian carpets Concluding remarks

Merci de votre attention !
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