Construction de fractions rationnelles à dynamique prescrite

Sébastien Godillon

Université de Cergy-Pontoise

Soutenance de thèse - 12 mai 2010

Construction of rational maps with prescribed dynamics

Sébastien Godillon

Cergy-Pontoise University

Thesis defense - May 12, 2010

Introduction	Background
From a tree to a Persian carpet	The McMullen's example
A collection of Persian carpets	the Persian carpet

Field: Study of holomorphic dynamical systems

Motivation: Find some examples of rational maps with particular complicated dynamics

- Questions: 1- How to construct rational maps from dynamical informations ?
 - 2- Which kind of rational maps is it possible to construct ?

Main tools: Quasiconformal surgery and Thurston theory

Introduction	Background
From a tree to a Persian carpet	The McMullen's example
A collection of Persian carpets	the Persian carpet

Let $f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ be a rational map of degree $d \ge 2$.

For every $z_0 \in \widehat{\mathbb{C}}$, consider its forward orbit $\{z_n = f^{\circ n}(z_0) \mid n \ge 1\}$.

$$z_0 \stackrel{f}{\mapsto} z_1 \stackrel{f}{\mapsto} z_2 \stackrel{f}{\mapsto} z_3 \stackrel{f}{\mapsto} \dots$$

Introduction Background From a tree to a Persian carpet The McMullen's example A collection of Persian carpet the Persian carpet

Let $f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ be a rational map of degree $d \ge 2$.

For every $z_0 \in \widehat{\mathbb{C}}$, consider its forward orbit $\{z_n = f^{\circ n}(z_0) \mid n \ge 1\}$.

$$z_0 \stackrel{f}{\mapsto} z_1 \stackrel{f}{\mapsto} z_2 \stackrel{f}{\mapsto} z_3 \stackrel{f}{\mapsto} \dots$$

Definition (Fatou and Julia sets)

• the Fatou set is

$$\mathcal{F}(f) = \{z_0 \in \widehat{\mathbb{C}} \ / \ (f^{\circ n})_{n \geqslant 1} ext{ is a normal family at } z_0\}$$

• the Julia set is

$$\mathcal{J}(f) = \widehat{\mathbb{C}} - \mathcal{F}(f)$$

Introduction Background From a tree to a Persian carpet The McMullen's example A collection of Persian carpets the Persian carpet

Theorem

Let $f : \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ be a rational map of degree $d \ge 2$. $\mathcal{J}(f)$ is a nonempty fully invariant closed and perfect set. Furthermore either

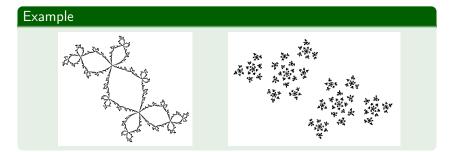
- $\mathcal{J}(f)$ is connected,
- or else $\mathcal{J}(f)$ has uncountably many connected components.

Introduction Background From a tree to a Persian carpet The McMullen's example A collection of Persian carpets the Persian carpet

Theorem

Let $f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ be a rational map of degree $d \ge 2$. $\mathcal{J}(f)$ is a nonempty fully invariant closed and perfect set. Furthermore either

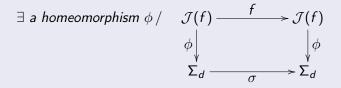
- $\mathcal{J}(f)$ is connected,
- or else $\mathcal{J}(f)$ has uncountably many connected components.



Introduction	Background
From a tree to a Persian carpet	The McMullen's example
A collection of Persian carpets	the Persian carpet

Theorem

Let $f : \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ be a rational map of degree $d \ge 2$. If there exists an attracting fixed point z_{∞} of f such that every critical point of f lies in the immediate attracting bassin of z_{∞} then



where

•
$$\Sigma_d = \{1, 2, ..., d\}^{\mathbb{N}}$$
 is a Cantor set
• $\varepsilon = (\varepsilon_0 \varepsilon_1 \varepsilon_2 ...) \mapsto \sigma(\varepsilon) = (\varepsilon_1 \varepsilon_2 \varepsilon_3 ...)$ is the shift map

Introduction

From a tree to a Persian carpet A collection of Persian carpets Background The McMullen's example the Persian carpet

Introduction

From a tree to a Persian carpet A collection of Persian carpets Background The McMullen's example the Persian carpet

Example (McMullen)

Theorem

 f_{CoC} acts on $\mathcal{J}_{CoC} = \{J \text{ Julia component of } \mathcal{J}(f_{CoC})\} \approx \bigcup_{\alpha \in \Sigma_2} C_{\alpha}.$

 Σ_2

 σ

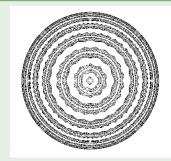
 $\rightarrow \Sigma_2$

Background The McMullen's example the Persian carpet

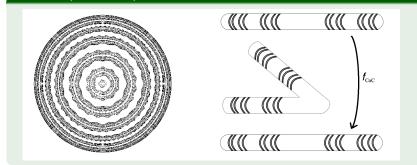
Example (McMullen)

Sébastien Godillon Construction of rational maps with prescribed dynamics

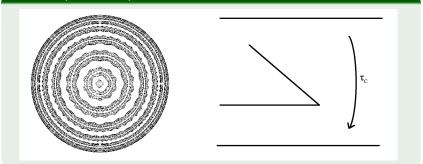
Background The McMullen's example the Persian carpet



Background The McMullen's example the Persian carpet



Background The McMullen's example the Persian carpet



Introduction	Background
From a tree to a Persian carpet	The McMullen's example
A collection of Persian carpets	the Persian carpet

Theorem

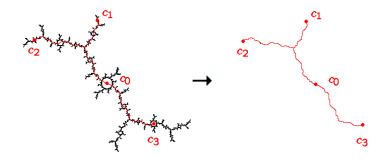
where

•
$$\tau_C : [0,1] \to [0,1], x \mapsto \begin{cases} 3x & \text{if } x \in [0,\frac{1}{2}] \\ 3(1-x) & \text{if } x \in [\frac{1}{2},1] \end{cases}$$

• and $\mathcal{J}_C = \{x \in [0,1] / \forall n \ge 0, \tau_C^{\circ n}(x) \in [0,\frac{1}{3}] \cup [\frac{2}{3},1] \}$

Introduction	Background
From a tree to a Persian carpet	The McMullen's example
A collection of Persian carpets	the Persian carpet

Consider $P_c: z \mapsto z^2 + c$ where $c \approx -0.157 \ldots + 1.032 \ldots i$

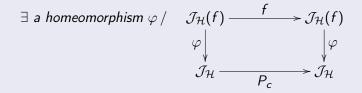


Let $\mathcal{J}_{\mathcal{H}}$ be the intersection between $\mathcal{J}(P_c)$ and the Hubbard tree \mathcal{H}

Introduction Background From a tree to a Persian carpet The McMullen's example A collection of Persian carpet the Persian carpet

Theorem (Persian carpet)

There exists a rational map $f:\widehat{\mathbb{C}}\to\widehat{\mathbb{C}}$ such that



where $\mathcal{J}_{\mathcal{H}}(f)$ is a subset of Julia components of f. Moreover,

- there exists only one fixed Julia component J_{lpha}
- $\forall J \in \mathcal{J}_{\mathcal{H}}(f) \bigcup_{n \geqslant 0} (f^{\circ n})^{-1}(J_{\alpha})$, J is a Jordan curve

Introduction

From a tree to a Persian carpet A collection of Persian carpets Background The McMullen's example the Persian carpet

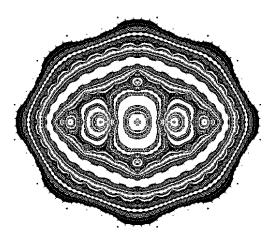
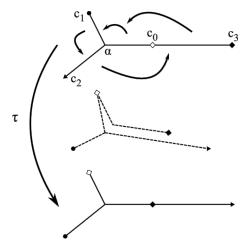


Figure: A Persian carpet

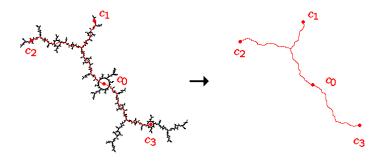
Sébastien Godillon Construction of rational maps with prescribed dynamics

Introduction A Hubbard tree
Unfolding
A collection of Persian carpets
Quasiconformal surgery

Consider the following abstract Hubbard tree $\mathcal{H} = (T, \tau)$.

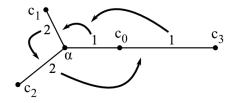


Introduction	A Hubbard tree
From a tree to a Persian carpet	Unfolding
A collection of Persian carpets	Quasiconformal surgery



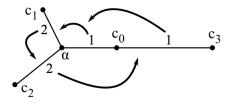
Introduction	A Hubbard tree
From a tree to a Persian carpet	Unfolding
A collection of Persian carpets	Quasiconformal surgery

We equip the Hubbard tree \mathcal{H} with a weight function w.



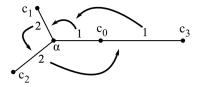
Introduction	A Hubbard tree
From a tree to a Persian carpet	Unfolding
A collection of Persian carpets	Quasiconformal surgery

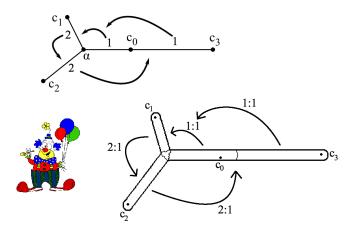
We equip the Hubbard tree \mathcal{H} with a weight function w.



Fact (the weighted Hubbard tree (\mathcal{H}, w) is unobstructed)

$$\begin{cases} \tau(e_{\alpha,c_{0}}) = e_{\alpha,c_{1}} \\ \tau(e_{\alpha,c_{1}}) = e_{\alpha,c_{2}} \\ \tau(e_{\alpha,c_{2}}) = e_{\alpha,c_{0}} \cup e_{c_{0},c_{3}} \\ \tau(e_{c_{0},c_{3}}) = e_{\alpha,c_{1}} \cup e_{\alpha,c_{0}} \end{cases} gives \qquad M = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 0 & \frac{1}{2} \\ 1 & 1 & 0 & 0 \end{pmatrix}$$
$$gives \qquad M = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 0 & \frac{1}{2} \\ 1 & 1 & 0 & 0 \end{pmatrix}$$
$$gives \qquad M = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 0 & \frac{1}{2} \\ 1 & 1 & 0 & 0 \end{pmatrix}$$
$$gives \qquad M = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 0 & \frac{1}{2} \\ 1 & 1 & 0 & 0 \end{pmatrix}$$



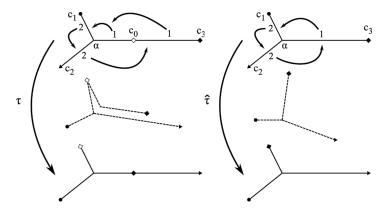


Question: How to construct a rational map $f : \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ "encoded" by the unobstructed weighted Hubbard tree (\mathcal{H}, w) ?

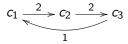
Question: How to construct a rational map $f : \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ "encoded" by the unobstructed weighted Hubbard tree (\mathcal{H}, w) ?

Answer: By quasiconformal surgery !

Introduction	A Hubbard tree
From a tree to a Persian carpet	Unfolding
A collection of Persian carpets	Quasiconformal surgery



A Hubbard tree Unfolding Quasiconformal surgery

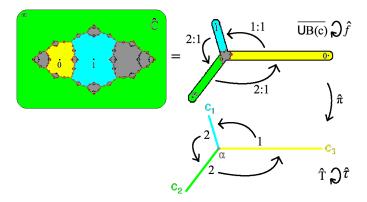


$$c_1 = 1 \xrightarrow{2} c_2 = \infty \xrightarrow{2} c_3 = 0$$

$$\widehat{f} = (z \mapsto z^2) \circ \left(z \mapsto \frac{1}{1-z}\right) = \left(z \mapsto \frac{1}{(1-z)^2}\right)$$

$$c_1 = 1 \xrightarrow{2} c_2 = \infty \xrightarrow{2} c_3 = 0$$

$$\widehat{f} = (z \mapsto z^2) \circ \left(z \mapsto \frac{1}{1-z}\right) = \left(z \mapsto \frac{1}{(1-z)^2}\right)$$



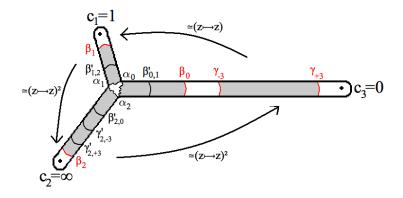
Step 1 - Cutting off

Lemma (equipotentials layout)

Given any positive constant C > 0, there exist five equipotentials $\beta_0, \beta_1, \beta_2, \gamma_{-3}$ and γ_{+3} such that (i) $\beta_0 \subset B(0), \beta_1 \subset B(1)$ and $\beta_2 \subset B(2)$ (ii) $\gamma_{-3}, \gamma_{+3} \subset B(0)$ and $|\phi_0(\beta_0)| > |\phi_0(\gamma_{-3})| > |\phi_0(\gamma_{+3})|$ (iii) the following inequalities hold $mod(\alpha_1, \beta_1) < mod(\alpha_0, \beta_0)$ $\begin{cases} \frac{1}{2} \operatorname{mod}(\alpha_{2}, \beta_{2}) < \operatorname{mod}(\alpha_{1}, \beta_{1}) \\ \frac{1}{2} \operatorname{mod}(\alpha_{0}, \beta_{0}) + \frac{1}{2} \operatorname{mod}(\gamma_{-3}, \gamma_{+3}) < \operatorname{mod}(\alpha_{2}, \beta_{2}) \\ \operatorname{mod}(\alpha_{0}, \beta_{0}) + \operatorname{mod}(\alpha_{1}, \beta_{1}) + \mathcal{C} < \operatorname{mod}(\gamma_{-3}, \gamma_{+3}) \end{cases}$ (1)

$$\frac{1}{2} \operatorname{mod}(\alpha_0, \gamma_{+3}) < \operatorname{mod}(\alpha_2, \beta_2)$$
(2)

Introduction	A Hubbard tree
From a tree to a Persian carpet	Unfolding
A collection of Persian carpets	Quasiconformal surgery



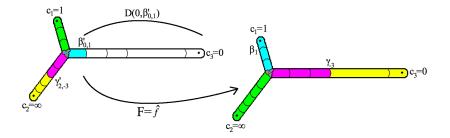
Sketch of proof for equipotentials layout Lemma.

Compare

$$\begin{cases} \mod(\alpha_{1},\beta_{1}) < \mod(\alpha_{0},\beta_{0}) \\ \frac{1}{2}\mod(\alpha_{2},\beta_{2}) < \mod(\alpha_{1},\beta_{1}) \\ \frac{1}{2}\mod(\alpha_{0},\beta_{0}) + \frac{1}{2}\mod(\gamma_{-3},\gamma_{+3}) < \mod(\alpha_{2},\beta_{2}) \\ \mod(\alpha_{0},\beta_{0}) + \mod(\alpha_{1},\beta_{1}) + C < \mod(\gamma_{-3},\gamma_{+3}) \end{cases}$$
(1)
with $M = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 0 & \frac{1}{2} \\ 1 & 1 & 0 & 0 \end{pmatrix}$
Furthermore $\lambda(M) < 1$ implies $\exists x \in \mathbb{R}^{4} / x > 0$ and $Mx < x$

Step 2 - The branching piece Define

$$F_{|\widehat{\mathbb{C}}-D(0,\beta'_{0,1})} = \widehat{f}_{|\widehat{\mathbb{C}}-D(0,\beta'_{0,1})}$$

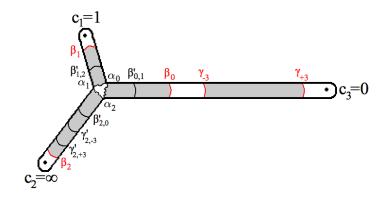


Step 3 - Preimage of the branching piece

Lemma (inverse Grötzsch's inequality - Cui Guizhen and Tan Lei)

 $\exists C > 0 \,/\, \forall \beta_0, \beta_1, \, \operatorname{mod}(\beta_1, \beta_0) < \operatorname{mod}(\alpha_0, \beta_0) + \operatorname{mod}(\alpha_1, \beta_1) + C$

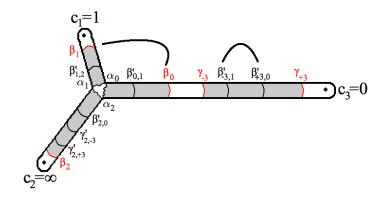
 $(1) \Rightarrow \operatorname{mod}(\alpha_0, \beta_0) + \operatorname{mod}(\alpha_1, \beta_1) + C < \operatorname{mod}(\gamma_{-3}, \gamma_{+3})$



Step 3 - Preimage of the branching piece

Lemma (inverse Grötzsch's inequality - Cui Guizhen and Tan Lei) $\exists C > 0 / \forall \beta_0, \beta_1, \mod(\beta_1, \beta_0) < \mod(\alpha_0, \beta_0) + \mod(\alpha_1, \beta_1) + C$

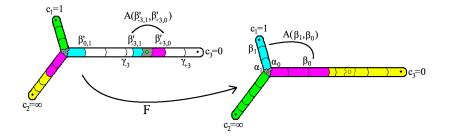
 $\exists \beta'_{-3,1}, \beta'_{+3,0} \subset A(\gamma_{-3}, \gamma_{+3}) / \bmod(\beta'_{-3,1}, \beta'_{+3,0}) = \bmod(\beta_1, \beta_0)$



Introduction	A Hubbard tree
From a tree to a Persian carpet	Unfolding
A collection of Persian carpets	Quasiconformal surgery

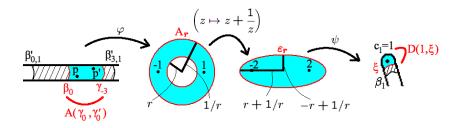
Define F on $A(\beta'_{-3,1},\beta'_{+3,0})$ to be a biholomorphic map such that

- F maps $A(eta_{-3,1}',eta_{+3,0}')$ onto $A(eta_1,eta_0)$
- *F* extends diffeomorphically to $\overline{A(\beta'_{-3,1},\beta'_{+3,0})}$ mapping $\beta'_{-3,1}$ onto β_1 and $\beta'_{+3,0}$ onto β_0



Introduction A Hubbard tree From a tree to a Persian carpet A collection of Persian carpets Quasiconformal surgery

Step 4 - Folding

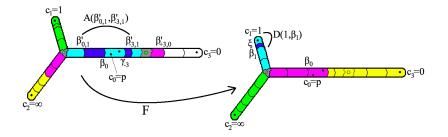


Define

$$F_{|\mathcal{A}(eta_0,\gamma_{-3})} = \psi \circ (z \mapsto z + rac{1}{z}) \circ \varphi$$

Introduction	A Hubbard tree
From a tree to a Persian carpet	Unfolding
A collection of Persian carpets	Quasiconformal surgery

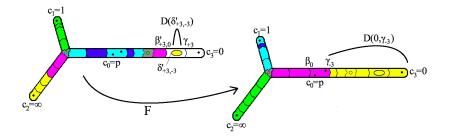
Extends quasiregularly F on
$$\overline{A(\beta'_{0,1},\beta_0)} \bigcup \overline{A(\gamma_{-3},\beta'_{-3,1})}$$



Step 5 - End with an end

Let $\delta'_{+3,-3} \subset A(\beta'_{+3,0},\gamma_{+3})$ be a smooth curve. Define F on $D(\delta'_{+3,-3})$ to be a biholomorphic map such that

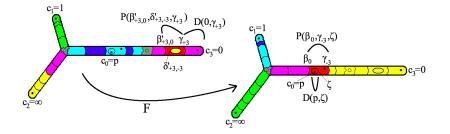
- F maps $D(\delta'_{+3,-3})$ onto $D(0,\gamma_{-3})$
- *F* extends diffeomorphically to $\overline{D(\delta'_{+3,-3})}$ mapping $\delta'_{+3,-3}$ onto γ_{-3}



Introduction A Hubbard tree From a tree to a Persian carpet Unfolding A collection of Persian carpets Quasiconformal surgery

Define F on $D(0, \gamma_{+3})$ to be any biholomorphic map such that

- F maps $D(0,\gamma_{+3})$ onto $D(p,\zeta)\subset A(\beta_0,\gamma_{-3})$ with F(0)=p
- F extends diffeomorphically to $\overline{D(0, \gamma_{+3})}$ mapping γ_{+3} onto ζ



Extends quasiregularly F on $\overline{P(\beta'_{+3,0}, \delta'_{+3,-3}, \gamma_{+3})}$

Final Step

• *F* is holomorphic on an open set $H \subset \widehat{\mathbb{C}}$

$$H = \underbrace{\left(\widehat{\mathbb{C}} - \overline{D(0, \beta'_{0,1})}\right)}_{\text{Step 2}} \bigcup \underbrace{\mathcal{A}(\beta'_{-3,1}, \beta'_{+3,0})}_{\text{Step 3}} \bigcup \underbrace{\mathcal{A}(\beta_{0}, \gamma_{-3})}_{\text{Step 4}} \\ \bigcup \underbrace{D(\delta'_{+3,-3}) \cup D(0, \gamma_{+3})}_{\text{Step 5}}$$

• F extends quasiregularly to the complement $Q = \widehat{\mathbb{C}} - H$

$$Q = \underbrace{\overline{\mathcal{A}(\beta'_{0,1},\beta_0)} \cup \overline{\mathcal{A}(\gamma_{-3},\beta'_{-3,1})}}_{\text{Step 4}} \bigcup \underbrace{\overline{\mathcal{P}(\beta'_{+3,0},\delta'_{+3,-3},\gamma_{+3})}}_{\text{Step 5}}$$

• \exists an open set $A \subset H$ such that $F(A) \subset A$ and $F^{\circ 2}(Q) \subset A$

$$\mathcal{A}=\mathcal{A}(eta_0,\gamma_{-3})\cup \mathcal{D}(1,eta_1)\cup \mathcal{D}(\infty,eta_2)\cup \mathcal{D}(0,\gamma_{+3})$$

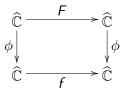
Introduction A Hubbard tree From a tree to a Persian carpet A collection of Persian carpets Quasiconformal surgery

Quasiconformal surgery principle:

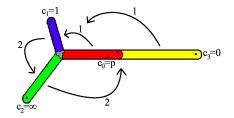
We may apply Morrey-Ahlfors-Bers theorem to get

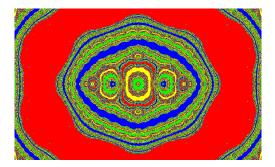
 \exists a quasiconformal map ϕ with F-invariant dilatation

Therefore $f = \phi \circ F \circ \phi^{-1}$ is a rational map.

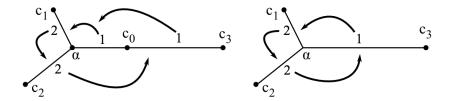


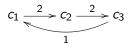
Introduction A Hubbard tree From a tree to a Persian carpet A collection of Persian carpets Quasiconformal surgery





Introduction	Realization of post-critically finite maps
From a tree to a Persian carpet	General statement
A collection of Persian carpets	Concluding remarks





This ramification portrait is realized by $\widehat{f} = \left(z \mapsto \frac{1}{(1-z)^2}\right)$

Introduction	Realization of post-critically finite maps
From a tree to a Persian carpet	General statement
A collection of Persian carpets	Concluding remarks

Question: Which kind of ramification portraits is realized by post-critically finite rational maps ?

Introduction	Realization of post-critically finite maps
From a tree to a Persian carpet	General statement
A collection of Persian carpets	Concluding remarks

Question: Which kind of ramification portraits is realized by post-critically finite rational maps ?

Answer: The Thurston's topological characterization !

Introduction	Realization of post-critically finite maps
From a tree to a Persian carpet	General statement
A collection of Persian carpets	Concluding remarks

Theorem (Thurton's topological characterization)

Let $f : \mathbb{S}^2 \to \mathbb{S}^2$ be a ramified covering with $|P_f| < \infty$ Then there exists a rational map $\hat{f} : \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ such that

 $\exists \varphi_{0}, \varphi_{1} \text{ homeomorphisms} / \begin{cases} (i) & \mathbb{S}^{2} \xrightarrow{\varphi_{1}} & \widehat{\mathbb{C}} \\ & f \\ & & \downarrow & \\ & \mathbb{S}^{2} \xrightarrow{\varphi_{0}} & \widehat{\mathbb{C}} \\ (ii) & \varphi_{0}(P_{f}) = \varphi_{1}(P_{f}) = P_{\widehat{f}} \\ (iii) & \varphi_{0}, \varphi_{1} \text{ are isotopic rel. to } P_{f} \end{cases}$

if and only if f has no Thurston obstruction.

Topological part

Definition (N-cyclic ramification portrait of polynomial type)

A ramification portrait $\mathcal{R} = (\Omega, P, \sigma, \nu)$ is *N*-cyclic ramification portrait of polynomial type if

• \mathcal{R} is branch compatible: $\forall y \in P, \sum_{\sigma(x)=y} \nu(x) \leq \deg(\mathcal{R})$

•
$$\exists \infty \in \Omega \cup \mathsf{P} / \sigma(\infty) = \infty$$
 and $\nu(\infty) = \mathsf{deg}(\mathcal{R})$

•
$$\forall \omega \in \Omega - \{\infty\}, \omega \text{ is } \sigma \text{-periodic}$$

• $P - \{\infty\}$ is the union of exactly N disjoint periodic cycles

Topological part

Definition (N-cyclic ramification portrait of polynomial type)

A ramification portrait $\mathcal{R} = (\Omega, P, \sigma, \nu)$ is *N*-cyclic ramification portrait of polynomial type if

• \mathcal{R} is branch compatible: $\forall y \in P, \sum_{\sigma(x)=y} \nu(x) \leq \deg(\mathcal{R})$

•
$$\exists \infty \in \Omega \cup \mathsf{P} / \sigma(\infty) = \infty$$
 and $\nu(\infty) = \mathsf{deg}(\mathcal{R})$

•
$$\forall \omega \in \Omega - \{\infty\}, \omega \text{ is } \sigma \text{-periodic}$$

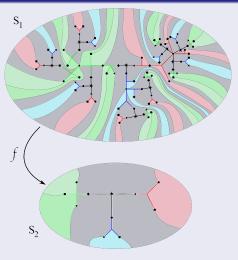
• $P - \{\infty\}$ is the union of exactly N disjoint periodic cycles

Theorem (topological realization)

Every N-cyclic ramification portrait of polynomial type is realized by a ramified covering $f : \mathbb{S}^2 \to \mathbb{S}^2$.

Introduction From a tree to a Persian carpet A collection of Persian carpets Realization of post-critically finite maps General statement Concluding remarks

Sketch of proof for topological realization.



Analytical part

Theorem (polynomial criterion)

If a topological polynomial f has a Thurston obstruction then

- (i) f has a Levy cycle Γ contained in the Thurston obstruction
- (ii) there exist some post-critical points of f whose iterations do not accumulate a critical point

Analytical part

Theorem (polynomial criterion)

If a topological polynomial f has a Thurston obstruction then

- (i) f has a Levy cycle Γ contained in the Thurston obstruction
- (ii) there exist some post-critical points of f whose iterations do not accumulate a critical point

Corollary (Levy's criterion)

Let $f : \mathbb{S}^2 \to \mathbb{S}^2$ be a topological polynomial with $|P_f| < \infty$ If every critical point falls into a periodic cycle containing a critical point then f has no Thurston obstruction.

Analytical part

Theorem (polynomial criterion)

If a topological polynomial f has a Thurston obstruction then

- (i) f has a Levy cycle Γ contained in the Thurston obstruction
- (ii) there exist some post-critical points of f whose iterations do not accumulate a critical point

Corollary (Levy's criterion)

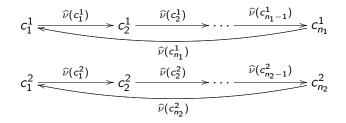
Let $f : \mathbb{S}^2 \to \mathbb{S}^2$ be a topological polynomial with $|P_f| < \infty$ If every critical point falls into a periodic cycle containing a critical point then f has no Thurston obstruction.

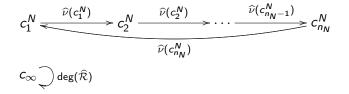
Corollary (analytical realization)

Every N-cyclic ramification portrait of polynomial type is realized by a polynomial $\hat{f} : \mathbb{S}^2 \to \mathbb{S}^2$.

Introduction Realization of post-critically finite maps From a tree to a Persian carpet General statement A collection of Persian carpets Concluding remarks

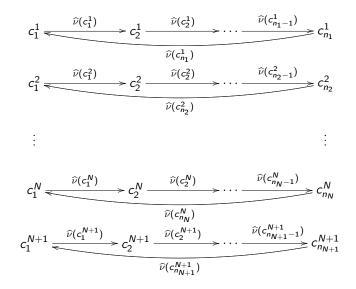
Let $\widehat{\mathcal{R}}$ be a *N*-cyclic ramification portrait of polynomial type.





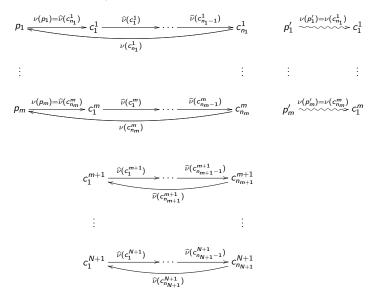
Introduction Realization of post-critically finite maps From a tree to a Persian carpet Concluding remarks

Let $\widehat{\mathcal{R}}$ be a *N*-cyclic ramification portrait of polynomial type.



Introduction Realization of post-critically finite maps From a tree to a Persian carpet General statement A collection of Persian carpets Concluding remarks

Let \mathcal{R} be the following ramification portrait.



Definition (admissible weighted Hubbard tree)

Such a ramification portrait \mathcal{R} may be deduced from a weighted Hubbard tree (\mathcal{H}, w) such that

• tree shape condition:

 \mathcal{H} is a starlike tree around an unique branched point α , every p_i is the endpoint of two exactly two edges and every c_k^i is an end

• realization condition:

the associated sub-ramification portrait $\widehat{\mathcal{R}}$ is a N-cyclic ramification portrait of polynomial type

• Thurston condition: (*H*, *w*) is unobstructed

Introduction	Realization of post-critically finite maps
From a tree to a Persian carpet	General statement
A collection of Persian carpets	Concluding remarks

Theorem (realization of admissible weighted Hubbard tree)

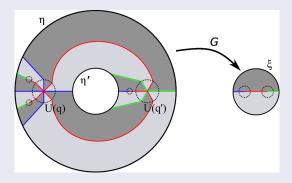
For every admissible weighted Hubbard tree (\mathcal{H}, w) there exists a rational map $f : \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ such that

- (i) f realizes the associated ramification portrait \mathcal{R}
- (ii) the Julia set $\mathcal{J}(f)$ is disconnected

Introduction From a tree to a Persian carpet A collection of Persian carpets Realization of post-critically finite maps General statement Concluding remarks

Sketch of the proof.

First idea: Folding

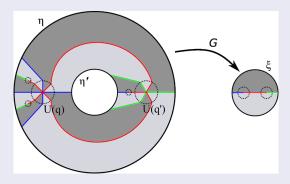


Sébastien Godillon Construction of rational maps with prescribed dynamics

Introduction From a tree to a Persian carpet A collection of Persian carpets Realization of post-critically finite maps General statement Concluding remarks

Sketch of the proof.

First idea: Folding



Second idea: Final Step Use a result of Cui Guizhen and Tan Lei generalizing the Thurston's theorem for some non-post-critically finite maps.

Introduction	Realization of post-critically finite maps
From a tree to a Persian carpet	General statement
A collection of Persian carpets	Concluding remarks

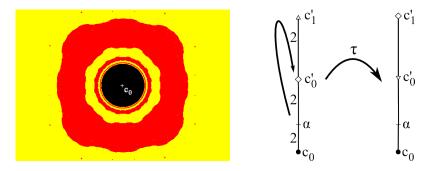


Figure: Different motifs of Persian carpets

Introduction	Realization of post-critically finite maps
From a tree to a Persian carpet	General statement
A collection of Persian carpets	Concluding remarks

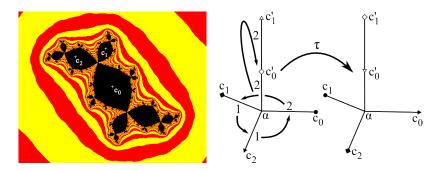


Figure: Different motifs of Persian carpets

Introduction	Realization of post-critically finite maps
From a tree to a Persian carpet	General statement
A collection of Persian carpets	Concluding remarks



Figure: Different motifs of Persian carpets

Introduction	Realization of post-critically finite maps
From a tree to a Persian carpet	General statement
A collection of Persian carpets	Concluding remarks

- Enlarge the tree shape condition and the realization condition .
- Encode the exchanging dynamics of Julia components.
- Extends continuously the encoding map $\pi : \mathcal{J}_{\mathcal{H}} \to \mathcal{H}$ to $\widehat{\mathbb{C}}$.

Introduction	Realization of post-critically finite maps
From a tree to a Persian carpet	General statement
A collection of Persian carpets	Concluding remarks

- Enlarge the tree shape condition and the realization condition .
- Encode the exchanging dynamics of Julia components.
- Extends continuously the encoding map $\pi : \mathcal{J}_{\mathcal{H}} \to \mathcal{H}$ to $\widehat{\mathbb{C}}$.

And more generally,

- What about the unicity ?
- What about the converse problem ?

Introduction	Realization of post-critically finite maps
From a tree to a Persian carpet	General statement
A collection of Persian carpets	Concluding remarks

Merci de votre attention !

