On McMullen-like mappings

Sébastien Godillon

$$f_{\lambda}(z)=z^n+rac{\lambda}{z^d}$$
 where $|\lambda|\ll 1$ and $\boxed{rac{1}{n}+rac{1}{d}<1}$

$$z^3 + \frac{10^{-2}}{z^3}$$

$$f_{\lambda}(z)=z^n+rac{\lambda}{z^d}$$
 where $|\lambda|\ll 1$ and $\dfrac{1}{n}+\dfrac{1}{d}<1$

$$f_{\lambda}(z)=z^n+rac{\lambda}{z^d}$$
 where $|\lambda|\ll 1$ and $\left|rac{1}{n}+rac{1}{d}<1
ight|$

$$\left\{ \begin{array}{ll} V_{\infty} &:= & \text{attractive bassin at infinity} \\ T_0 &:= & f_{\lambda}^{-1}(V_{\infty}) \end{array} \right.$$

$$f_{\lambda}(z)=z^n+rac{\lambda}{z^d}$$
 where $|\lambda|\ll 1$ and $\left|rac{1}{n}+rac{1}{d}<1
ight|$

$$\begin{cases} V_{\infty} &:= \text{ attractive bassin at infinity} \\ T_0 &:= f_{\lambda}^{-1}(V_{\infty}) \end{cases}$$

$$|\lambda| \ll 1 \Rightarrow \begin{cases} V_{\infty} &\approx \{|z| > 1\} \\ T_0 &\approx \{|z| < |\lambda|^{1/d}\} \end{cases}$$

$$f_{\lambda}(z)=z^n+rac{\lambda}{z^d}$$
 where $|\lambda|\ll 1$ and $\left[rac{1}{n}+rac{1}{d}<1
ight]$

$$\frac{z}{\sqrt{x}}$$

$$\begin{cases}
\operatorname{Crit}_{\lambda} = \left\{ \infty, 0, c_{k} = O\left(|\lambda|^{\frac{1}{n+d}}\right) \right\} \\
f_{\lambda}(\operatorname{Crit}_{\lambda}) = \left\{ \infty, f_{\lambda}(c_{k}) = O\left(|\lambda|^{\frac{n}{n+d}}\right) \right\}
\end{cases} |z| \approx 1$$

$$|z| \approx 1$$

$$|z| \approx \lambda^{1/6}$$

$$f_{\lambda}(z) = z^n + \frac{\lambda}{z^d}$$
 where $|\lambda| \ll 1$ and $\left| \frac{1}{n} + \frac{1}{d} < 1 \right|$

$$\begin{cases}
\operatorname{Crit}_{\lambda} &= \left\{ \infty, 0, c_{k} = O\left(|\lambda|^{\frac{1}{n+d}}\right) \right\} \\
f_{\lambda}(\operatorname{Crit}_{\lambda}) &= \left\{ \infty, f_{\lambda}(c_{k}) = O\left(|\lambda|^{\frac{n}{n+d}}\right) \right\} \\
\boxed{\frac{1}{n} + \frac{1}{d} < 1} &\Rightarrow 0 < \frac{1}{n+d} < \frac{1}{d} < \frac{n}{n+d}
\end{cases}$$

$$f_{\lambda}(z)=z^n+rac{\lambda}{z^d}$$
 where $|\lambda|\ll 1$ and $\left|rac{1}{n}+rac{1}{d}<1
ight|$

$$\begin{cases}
\operatorname{Crit}_{\lambda} &= \left\{ \infty, 0, c_k = O\left(|\lambda|^{\frac{1}{n+d}}\right) \right\} \\
f_{\lambda}(\operatorname{Crit}_{\lambda}) &= \left\{ \infty, f_{\lambda}(c_k) = O\left(|\lambda|^{\frac{n}{n+d}}\right) \right\} \\
\left[\frac{1}{n} + \frac{1}{d} < 1 \right] &\Rightarrow 0 < \frac{1}{n+d} < \frac{1}{d} < \frac{n}{n+d} \\
&\Rightarrow f_{\lambda}(c_k) \in T_0
\end{cases}$$

$$f_{\lambda}(z)=z^n+rac{\lambda}{z^d}$$
 where $|\lambda|\ll 1$ and $\left|rac{1}{n}+rac{1}{d}<1
ight|$

$$f_{\lambda}(z)=z^n+rac{\lambda}{z^d} \qquad ext{where} \quad |\lambda|\ll 1 \quad ext{and} \quad \boxed{rac{1}{n}+rac{1}{d}<1}$$

$$f_{\lambda}(z)=z^n+rac{\lambda}{z^d}$$
 where $|\lambda|\ll 1$ and $\left|rac{1}{n}+rac{1}{d}<1
ight|$

$$\mathcal{J}(f_{\lambda}) \simeq \Sigma_{2} \times \mathbb{S}^{1}$$

$$\Sigma_{2} := \{ (\varepsilon_{0}, \varepsilon_{1}, \dots) \in \{-1, +1\}^{\mathbb{N}} \}$$

$$J \simeq \mathbb{S}^{1} \leftrightarrow \varepsilon_{k} = \begin{cases} -1 & \text{si} \quad f_{\lambda}^{k}(J) \in A_{0}^{-} \\ +1 & \text{si} \quad f_{\lambda}^{k}(J) \in A_{0}^{+} \end{cases}$$

$$f_{\lambda}(z)=z^n+rac{\lambda}{z^d}$$
 where $|\lambda|\ll 1$ and $\boxed{rac{1}{n}+rac{1}{d}<1}$

$$\begin{split} \mathcal{J}(f_{\lambda}) &\simeq \Sigma_2 \times \mathbb{S}^1 \\ \Sigma_2 &:= \{ (\varepsilon_0, \varepsilon_1, \dots) \in \{-1, +1\}^{\mathbb{N}} \} \\ J &\simeq \mathbb{S}^1 \leftrightarrow \varepsilon_k = \left\{ \begin{array}{cc} -1 & \text{si} & f_{\lambda}^k(J) \in A_0^- \\ +1 & \text{si} & f_{\lambda}^k(J) \in A_0^+ \end{array} \right. \end{split}$$

 $\tau(\varepsilon_0, \varepsilon_1, \dots) := \begin{cases} (-\varepsilon_1, -\varepsilon_2, \dots) & \text{si} \quad \varepsilon_0 = -1 \\ (\varepsilon_1, \varepsilon_2, \dots) & \text{si} \quad \varepsilon_0 = +1 \end{cases}$

Exchanging dynamics $\leftrightarrow \tau : \Sigma_2 \to \Sigma_2$

$$f_{\lambda}(z)=z^n+rac{\lambda}{z^d}$$
 where $|\lambda|\ll 1$ and $\left\lceilrac{1}{n}+rac{1}{d}<1
ight
ceil$

$$\begin{cases} \operatorname{mod}(A_0^-) + \operatorname{mod}(A_0^+) < \operatorname{mod}(A) \\ \operatorname{mod}(A_0^-) = \frac{1}{d} \operatorname{mod}(A) \\ \operatorname{mod}(A_0^+) = \frac{1}{n} \operatorname{mod}(A) \end{cases}$$

$$f_{\lambda}(z) = z^n + \frac{\lambda}{z^d} \qquad \text{where} \quad |\lambda| \ll 1 \quad \text{and} \quad \boxed{\frac{1}{n} + \frac{1}{d} < 1}$$

$$\begin{cases} \operatorname{mod}(A_0^-) + \operatorname{mod}(A_0^+) < \operatorname{mod}(A) \\ \operatorname{mod}(A_0^-) = \frac{1}{d} \operatorname{mod}(A) \\ \operatorname{mod}(A_0^+) = \frac{1}{n} \operatorname{mod}(A) \end{cases}$$
$$\Rightarrow \boxed{\frac{1}{n} + \frac{1}{d} < 1}$$

$$f_{\lambda}(z)=z^n+rac{\lambda}{z^d}$$
 where $|\lambda|\ll 1$ and $\left|rac{1}{n}+rac{1}{d}<1
ight|$

$$z^3 + \frac{10^{-2}}{z^3}$$

Example 2: Devaney-Marotta 2008

$$\widetilde{f}_{\lambda}(z)=z^n+rac{\lambda}{(z-a)^d} \qquad ext{where} \quad |\lambda|,|a|\ll 1 \quad ext{and} \quad \left\lfloor rac{1}{n}+rac{1}{d}<1
ight
floor$$

$$z^3 + \frac{10^{-2}}{(z-10^{-2})^3}$$

Example 3: Blanchard-Devaney-Garijo-Russell 2008

Let $c \in \mathbb{C}$ be such that $c_0 = 0 \xrightarrow{z^n + c} c_1 = c \xrightarrow{z^n + c} c_2 \xrightarrow{} \dots$ $g_{\lambda}(z) = z^n + c + \frac{\lambda}{z^n}$ where $|\lambda| \ll 1$ and $n \geqslant 3$

$$z^3 + i + \frac{10^{-7}}{z^3}$$

Example 4: Garijo-Marotta-Russell 2013

Let $c \in \mathbb{C}$ be such that $c_0 = 0 \xrightarrow{z^2 + c} c_1 = c \xrightarrow{z^2 + c} c_2 \xrightarrow{} \dots \xrightarrow{} c_{p-1}$.

$$h_{\lambda}(z) = z^2 + c + \frac{\lambda}{\prod_{j=0}^{p-1} (z-c_j)^{d_j}} \text{ where } |\lambda| \ll 1 \text{ and } \begin{bmatrix} 2d_1 & > & d_0+2 \\ d_2 & > & d_1+1 \\ & \cdots & \\ d_0 & > & d_{p-1}+1 \end{bmatrix}$$

$$z^2 + c_{\mathsf{lapin}} + \frac{10^{-24}}{z^{11}(z-c_1)^7(z-c_2)^9}$$

Example 4: Garijo-Marotta-Russell 2013

Let $c \in \mathbb{C}$ be such that $c_0 = 0 \xrightarrow{z_1 = c} c_1 = c \xrightarrow{z_2 + c} c_2 \xrightarrow{z_1 = c} c_{p-1}$.

$$h_{\lambda}(z) = z^2 + c + \frac{\lambda}{\prod_{j=0}^{p-1} (z - c_j)^{d_j}} \text{ where } |\lambda| \ll 1 \text{ and } \begin{bmatrix} 2d_1 & > & d_0 + 2 \\ d_2 & > & d_1 + 1 \\ & \ddots & \\ d_0 & > & d_{p-1} + 1 \end{bmatrix}$$

Give a global setting to the McMullen-like mappings.

 ${\sf Combinatorics} {\longleftrightarrow} {\sf Julia} {\longleftrightarrow} {\sf Geometry}$

$$A_0 \to T_0 \to V_\infty$$
$$f_\lambda(c_k) \in T_0$$

Define the McMullen-like mappings by characterizing the combinatorics with easy to check conditions. Combinatorics <-----> Julia <----> Geometry

$$A_0 \to T_0 \to V_\infty$$
 $\simeq \Sigma_2 \times \mathbb{S}^1$
 $f_\lambda(c_k) \in T_0$ $\sigma: \Sigma_2 \to \Sigma_2$

- Define the McMullen-like mappings by characterizing the combinatorics with easy to check conditions.
- Justify the definition by describing the Julia components and the exchanging dynamics of Julia components which are not points.

$$A_0 \to T_0 \to V_\infty$$
 $\simeq \Sigma_2 \times \mathbb{S}^1$ $f_\lambda(c_k) \in T_0$ $\sigma: \Sigma_2 \to \Sigma_2$ $\boxed{\frac{1}{n} + \frac{1}{d} < 1}$

- Define the McMullen-like mappings by characterizing the combinatorics with easy to check conditions.
- 2 Justify the definition by describing the Julia components and the exchanging dynamics of Julia components which are not points.
- Find a necessary and sufficient condition of existence which only depends on local degrees.

Let P be a post-critically finite hyperbolic polynomial. **Notations:**

- \bullet $n := \deg(P)$,
- $U_{\infty} :=$ attractive bassin at infinity $(\partial U_{\infty} = \mathcal{J}(P))$,
- $N := \#\{\text{super-attracting periodic cycles}\},$
- \bullet $\forall 1 \leqslant i \leqslant N, \ p_i := \mathsf{period} \ \mathsf{of} \ \mathsf{the} \ i\mathsf{-th} \ \mathsf{cycle},$
- {periodic components of $\mathcal{F}(P)$ } = { $U_{i,j} / 1 \le i \le N, \ j \in \mathbb{Z}/p_i\mathbb{Z}$ }, with $P(U_{i,j}) = U_{i,j+1}$ and $\deg(P|_{U_{i,j}} : U_{i,j} \to U_{i,j+1}) = n_{i,j}$.

Let P be a post-critically finite hyperbolic polynomial. Notations:

- $n := \deg(P)$,
- $U_{\infty}:=$ attractive bassin at infinity $(\partial U_{\infty}=\mathcal{J}(P))$,
- $N := \#\{\text{super-attracting periodic cycles}\},$
- $\forall 1 \leqslant i \leqslant N, \ p_i := \text{period of the } i\text{-th cycle,}$
- {periodic components of $\mathcal{F}(P)$ } = { $U_{i,j} / 1 \leqslant i \leqslant N, \ j \in \mathbb{Z}/p_i\mathbb{Z}$ }, with $P(U_{i,j}) = U_{i,j+1}$ and $\deg(P|_{U_{i,j}} : U_{i,j} \to U_{i,j+1}) = n_{i,j}$.

Definition 1

A pole data \mathcal{D} associated to P is

- a non-empty subset of $\{U_{i,j} \ / \ 1 \leqslant i \leqslant N, \ j \in \mathbb{Z}/p_i\mathbb{Z}\}$,
- a function $U_{i,j} \mapsto d_{i,j} \in \mathbb{N} \setminus \{0\}$ defined on this subset.

Notation: $d = \deg(\mathcal{D}) := \sum_{U_{i,j} \in \mathcal{D}} d_{i,j}$.

Definition 2

$$f \in \operatorname{Rat}(\widehat{\mathbb{C}})$$
 is a McMullen-like mapping of type (P, \mathcal{D}) iff (i)

(ii)

(iii)

(iv)

Definition 2

$$f \in \operatorname{Rat}(\widehat{\mathbb{C}})$$
 is a McMullen-like mapping of type (P, \mathcal{D}) iff

(i)
$$\exists V_\infty \subset \widehat{\mathbb{C}}$$
 topological disk such that

$$\begin{array}{cccc} \mathcal{C}_{\infty} \subset \mathbb{C} \text{ topological disk such that} & \partial U_{\infty} \stackrel{P}{\longrightarrow} \partial U_{\infty} \\ f(V_{\infty}) = V_{\infty} & \text{and} & \exists \varphi \in \operatorname{Homeo}^{+}(\widehat{\mathbb{C}}) / & \varphi \middle| & & \downarrow \varphi \\ & & \partial V_{\infty} \stackrel{f}{\longrightarrow} \partial V_{\infty} \end{array},$$

(iii)

(111

(iv)

Definition 2

$$\begin{split} f \in \mathrm{Rat}(\widehat{\mathbb{C}}) \text{ is a McMullen-like mapping of type } (P, \mathcal{D}) \text{ iff} \\ \text{(i)} \quad \exists V_{\infty} \subset \widehat{\mathbb{C}} \text{ topological disk such that} \\ f(V_{\infty}) = V_{\infty} \quad \text{and} \quad \exists \varphi \in \mathrm{Homeo}^+(\widehat{\mathbb{C}}) / \quad \varphi \middle| \qquad \qquad \downarrow \varphi \quad , \\ \partial V_{\infty} \stackrel{f}{\longrightarrow} \partial V_{\infty} \end{split}$$

Notations:

- $\forall U$ component of $\mathcal{F}(f)$ disjoint from U_{∞} , $V(U) := \text{component of } \widehat{\mathbb{C}} \setminus \varphi(\partial U) \text{ disjoint from } V_{\infty}$,
- $V_{i,j} := V(U_{i,j}).$

Definition 2

$$f \in \operatorname{Rat}(\widehat{\mathbb{C}})$$
 is a McMullen-like mapping of type (P, \mathcal{D}) iff
 (i) $\exists V_{\infty} \subset \widehat{\mathbb{C}}$ topological disk such that

$$f(V_{\infty}) = V_{\infty} \quad \text{and} \quad \exists \varphi \in \operatorname{Homeo}^{+}(\widehat{\mathbb{C}}) / \quad \begin{array}{c} P \\ \varphi \\ V_{\infty} \end{array} ,$$

$$\partial V_{\infty} \stackrel{P}{\longrightarrow} \partial V_{\infty}$$

(ii)
$$\forall U \notin \mathcal{D}, \ f(V(U)) = V(P(U)),$$

(iii)

(iv)

Definition 2

 $f \in \operatorname{Rat}(\widehat{\mathbb{C}})$ is a McMullen-like mapping of type (P, \mathcal{D}) iff

(i)
$$\exists V_{\infty} \subset \widehat{\mathbb{C}}$$
 topological disk such that

$$f(V_{\infty}) = V_{\infty} \quad \text{and} \quad \exists \varphi \in \operatorname{Homeo}^{+}(\widehat{\mathbb{C}}) / \quad \varphi \middle| \qquad \qquad \downarrow \varphi \quad ,$$

$$\partial V_{\infty} \xrightarrow{f} \partial V_{\infty}$$

(ii)
$$\forall U \notin \mathcal{D}, \ f(V(U)) = V(P(U)),$$

(iii)
$$\forall U_{i,j} \in \mathcal{D}, \ \exists \left\{ \begin{array}{l} T_{i,j} \subset V_{i,j} \ \text{topological disk} \\ A_{i,j} \Subset V_{i,j} \setminus \overline{T_{i,j}} \ \text{topological annulus} \end{array} \right.$$
 such that

- $f(T_{i,j}) = V_{\infty}$ and $\deg(f|_{T_{i,j}}) = d_{i,j}$,
- $f|_{A_{i,j}}$ proper map and $f(A_{i,j}) = \text{top. disk} \subset V(P(U_{i,j})) = V_{i,j+1}$,
- f has no critical points in $\overline{V_{i,j}} \setminus (T_{i,j} \cup A_{i,j})$,

(iv)

Definition 2

$$f \in \operatorname{Rat}(\widehat{\mathbb{C}})$$
 is a McMullen-like mapping of type (P, \mathcal{D}) iff

(i)
$$\exists V_{\infty} \subset \widehat{\mathbb{C}}$$
 topological disk such that
$$\begin{aligned} \partial U_{\infty} & \stackrel{P}{\longrightarrow} \partial U_{\infty} \\ f(V_{\infty}) &= V_{\infty} \quad \text{and} \quad \exists \varphi \in \operatorname{Homeo}^+(\widehat{\mathbb{C}})/ & \varphi \Big| & & \downarrow \varphi \\ \partial V_{\infty} & \stackrel{f}{\longrightarrow} \partial V_{\infty} \end{aligned} ,$$

(ii)
$$\forall U \notin \mathcal{D}, \ f(V(U)) = V(P(U)),$$

(iii)
$$\forall U_{i,j} \in \mathcal{D}, \ \exists \left\{ \begin{array}{l} T_{i,j} \subset V_{i,j} \ \text{topological disk} \\ A_{i,j} \Subset V_{i,j} \setminus \overline{T_{i,j}} \ \text{topological annulus} \end{array} \right.$$

- $f(T_{i,j}) = V_{\infty}$ and $\deg(f|_{T_{i,j}}) = d_{i,j}$,
- $f|_{A_{i,j}}$ proper map and $f(A_{i,j}) = \text{top. disk} \subset V(P(U_{i,j})) = V_{i,j+1}$,

such that

• f has no critical points in $\overline{V_{i,j}} \setminus (T_{i,j} \cup A_{i,j})$, (iv) $\forall c \in \widehat{\mathbb{C}}$ critical point of f, if

$$t_c := \min\{k \geqslant 1 \mid \exists U_{i,j} \in \mathcal{D}, \ f^k(c) \in V_{i,j}\} < +\infty$$

then $f^{t_c}(c) \in T_{i,j}$.

Lemma

If f is a McMullen-like mapping then

- $\forall U_{i,j} \in \mathcal{D}, \ \deg(f|_{A_{i,j}} : A_{i,j} \to f(A_{i,j}) \subset V_{i,j+1}) = n_{i,j} + d_{i,j},$
- $\forall c \in A_{i,j}$ critical point of f, $t_c = t_{i,j} := \min\{k \ge 1 \mid U_{i,j+k} \in \mathcal{D}\}$,
- we may assume $f^{t_{i,j}}(A_{i,j}) = T_{i,j+t_{i,j}}$ without loss of generality.

Known examples

 $f_{\lambda}, \widetilde{f}_{\lambda}, g_{\lambda}, h_{\lambda}, \dots$ are McMullen-like mappings.

Theorem 1 (Description of the Julia set)

If f is a McMullen-like mapping of type (P,\mathcal{D}) then

• f is hyperbolic and $\deg(f) = n + d = \deg(P) + \deg(\mathcal{D})$,

Theorem 1 (Description of the Julia set)

If f is a McMullen-like mapping of type (P, \mathcal{D}) then

- f is hyperbolic and $\deg(f) = n + d = \deg(P) + \deg(\mathcal{D})$,
- ${f 2} \ {\cal J}(f)$ contains:
 - countably many preimages of a fixed component of $\mathcal{J}(f)$ homeomorphic to $\mathcal{J}(P)$ for a certain polynomial P,
 - countably many Cantor of circles such that each circle belongs to a different component of $\mathcal{J}(f)$,
 - and if P is not affine conjugate to z^n , uncountably many point components which accumulate everywhere on $\mathcal{J}(f)$,

Theorem 1 (Description of the Julia set)

If f is a McMullen-like mapping of type (P, \mathcal{D}) then

- f is hyperbolic and $\deg(f) = n + d = \deg(P) + \deg(\mathcal{D})$, • $\mathcal{J}(f)$ contains:
- countably many preimages of a fixed component of $\mathcal{J}(f)$
 - homeomorphic to $\mathcal{J}(P)$ for a certain polynomial P,

 countably many Cantor of circles such that each circle belongs to a different component of $\mathcal{J}(f)$,
 - and if P is not affine conjugate to z^n , uncountably many point components which accumulate everywhere on $\mathcal{J}(f)$,
- the exchanging dynamics of Julia components which are not points is encoded by a sub-shift of finite type.

Theorem 2 (Rigidity)

Two McMullen-like mappings are topologically conjugate on their Julia sets by a $\varphi \in \operatorname{Homeo}^+(\widehat{\mathbb{C}})$ iff they have same type (P,\mathcal{D}) up to affine conjugation.

Theorem 3 (Arithmetic condition of existence)

There exists a McMullen-like mapping of type (P, \mathcal{D}) iff

There exists a McMullen-like mapping of type
$$(P,\mathcal{D})$$
 iff

$$\max_{1 \leqslant i \leqslant N} \left\{ \prod_{\substack{j \in \mathbb{Z}/p_i \mathbb{Z} \\ U_{i,j} \notin \mathcal{D}}} \frac{1}{n_{i,j}} \times \prod_{\substack{j \in \mathbb{Z}/p_i \mathbb{Z} \\ U_{i,j} \in \mathcal{D}}} \left(\frac{1}{n_{i,j}} + \frac{1}{d_{i,j}} \right) \right\} < 1 \tag{*}$$

Theorem 3 (Arithmetic condition of existence)

There exists a McMullen-like mapping of type (P,\mathcal{D}) iff

$$\max_{1 \leqslant i \leqslant N} \left\{ \prod_{\substack{j \in \mathbb{Z}/p_i\mathbb{Z} \\ U_{i,j} \notin \mathcal{D}}} \frac{1}{n_{i,j}} \times \prod_{\substack{j \in \mathbb{Z}/p_i\mathbb{Z} \\ U_{i,j} \in \mathcal{D}}} \left(\frac{1}{n_{i,j}} + \frac{1}{d_{i,j}} \right) \right\} < 1 \tag{\star}$$

Let $c \in \mathbb{C}$ be such that $c_0 = 0 \xrightarrow{z^n + c} c_1 = c \xrightarrow{z^n + c} c_2 \xrightarrow{\sum_{p=1}^{n} c_p} c_{p-1}$

$$g_{\lambda}(z) = z^n + c + \frac{\lambda}{z^d}$$
 where $|\lambda| \ll 1$ and $\boxed{\frac{1}{n} + \frac{1}{d} < 1}$ (\star)

Let $c\in\mathbb{C}$ be such that $c_0=0$ $\xrightarrow{z^2+c}$ c_2 $\xrightarrow{z^2+c}$ c_2 $\xrightarrow{}$ c_2 ... $\xrightarrow{}$ c_{p-1} .

Let
$$c \in \mathbb{C}$$
 be such that $c_0 = 0 \xrightarrow{\longrightarrow} c_1 = c \xrightarrow{\longrightarrow} c_2 \xrightarrow{\longrightarrow} \dots \xrightarrow{\longrightarrow} c_{p-1}$
$$h_{\lambda}(z) = z^2 + c + \frac{\lambda}{\prod_{j=0}^{p-1} (z - c_j)^{d_j}}$$

where $|\lambda| \ll 1$ and $\left| \left(\frac{1}{2} + \frac{1}{d_0} \right) \left(1 + \frac{1}{d_1} \right) \dots \left(1 + \frac{1}{d_{n-1}} \right) < 1 \right| (\star) \right|$

$$\begin{bmatrix} 2d_1 & > & d_0 + 2 \\ d_2 & > & d_1 + 1 \\ \dots & & \\ d_0 & > & d_{p-1} + 1 \end{bmatrix} \Rightarrow \begin{cases} \left(\frac{1}{2} + \frac{1}{d_0}\right) & = & \frac{d_0 + 2}{2d_0} & < & \frac{d_1}{d_0} \\ \left(1 + \frac{1}{d_1}\right) & = & \frac{d_1 + 1}{d_1} & < & \frac{d_2}{d_1} \\ \dots & & & \\ \left(1 + \frac{1}{d_{p-1}}\right) & = & \frac{d_{p-1} + 1}{d_{p-1}} & < & \frac{d_0}{d_{p-1}} \end{cases}$$

Let $c \in \mathbb{C}$ be such that $c_0 = 0 \xrightarrow{z^2 + c} c_1 = c \xrightarrow{z^2 + c} c_2 \xrightarrow{} \dots \xrightarrow{} c_{p-1}$.

$$h_{\lambda}(z) = z^{2} + c + \frac{\lambda}{\prod_{j=0}^{p-1} (z - c_{j})^{d_{j}}}$$

where $|\lambda| \ll 1$ and $\left| \left(\frac{1}{2} + \frac{1}{d_0} \right) \left(1 + \frac{1}{d_1} \right) \dots \left(1 + \frac{1}{d_{n-1}} \right) < 1 \right| (\star)$

Corollary of Theorem 3

If f is a McMullen-like mapping then $deg(f) \ge 4$.

Proof:

$$\max_{1 \leqslant i \leqslant N} \left\{ \prod_{U_{i,j} \notin \mathcal{D}} \frac{1}{n_{i,j}} \times \prod_{U_{i,j} \in \mathcal{D}} \left(\frac{1}{n_{i,j}} + \frac{1}{d_{i,j}} \right) \right\} < 1$$

$$\deg(f) = \underbrace{\deg(P)}_{\sum_{U_{i,j}}(n_{i,j}-1)+1} + \underbrace{\deg(\mathcal{D})}_{\sum_{U_{i,j}\in\mathcal{D}}d_{i,j}} \geqslant 4$$

$$q_{\lambda}(z) = 2z^3 - 3z^2 + 1 + \frac{\lambda}{z}$$
 where $|\lambda| \ll 1$

Proof:
$$\left| \frac{1}{2} \left(\frac{1}{2} + 1 \right) = \frac{3}{4} < 1 \right| (\star)$$

$$r_{\lambda}(z) = z^3 - i \frac{3\sqrt{2}}{2} z^2 + \frac{\lambda}{z^d} \qquad \text{where} \quad |\lambda| \ll 1 \quad \text{and} \quad \left\lceil \frac{1}{2} + \frac{1}{d} < 1 \right\rceil (\star)$$

Thank you for your attention!