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Let f : C→ C be a transcendental entire function with
exactly two critical values, say −1 and +1
no finite asymptotic values

Question: What does f “look like” ??



T = f −1([−1,+1]) is an infinite bipartite tree.
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cosh : Hr → C\[−1,+1] is a universal cover.



T = f −1([−1,+1]) is an infinite bipartite tree.
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∀Ω c.c. of C\T , τ|Ω = (cosh−1 ◦f|Ω) : Ω→ Hr is conformal.



Conversely: How to construct f from (T , τ) ?

More precisely, given
an infinite bipartite tree T ⊂ C with “smooth” enough geometry
a map τ such that τ|Ω : Ω→ Hr is conformal, ∀Ω c.c. of C\T

does there exist an entire function f : C→ C such that f = cosh ◦τ ?

Main problem: cosh ◦τ is not continuous across T in general.



Conversely: How to construct f from (T , τ) ?

More precisely, given
an infinite bipartite tree T ⊂ C with “smooth” enough geometry
a map τ such that τ|Ω : Ω→ Hr is conformal, ∀Ω c.c. of C\T

does there exist an entire function f : C→ C such that f = cosh ◦τ ?

Main problem: cosh ◦τ is not continuous across T in general.



Conversely: How to construct f from (T , τ) ?

More precisely, given
an infinite bipartite tree T ⊂ C with “smooth” enough geometry
a map τ such that τ|Ω : Ω→ Hr is conformal, ∀Ω c.c. of C\T

does there exist an entire function f : C→ C such that f = cosh ◦τ ?

Main problem: cosh ◦τ is not continuous across T in general.



Solution: Modify (T , τ) in a small neighborhood T (r0) of T .

More precisely, replace (T , τ) by (T ′, η) such that
T ⊂ T ′ ⊂ T (r0)

η = τ off T (r0)

η|Ω′ : Ω′ → Hr is K -quasiconformal, ∀Ω′ c.c. of C\T ′

cosh ◦η continuously extends across T ′

Then apply Morrey-Ahlfors-Bers measurable Riemann mapping theorem:

∃ an entire function f and a quasiconformal map φ such that
f ◦ φ = cosh ◦τ off T (r0)



Solution: Modify (T , τ) in a small neighborhood T (r0) of T .

More precisely, replace (T , τ) by (T ′, η) such that
T ⊂ T ′ ⊂ T (r0)

η = τ off T (r0)

η|Ω′ : Ω′ → Hr is K -quasiconformal, ∀Ω′ c.c. of C\T ′

cosh ◦η continuously extends across T ′

Then apply Morrey-Ahlfors-Bers measurable Riemann mapping theorem:

∃ an entire function f and a quasiconformal map φ such that
f ◦ φ = cosh ◦τ off T (r0)



Solution: Modify (T , τ) in a small neighborhood T (r0) of T .

More precisely, replace (T , τ) by (T ′, η) such that
T ⊂ T ′ ⊂ T (r0)

η = τ off T (r0)

η|Ω′ : Ω′ → Hr is K -quasiconformal, ∀Ω′ c.c. of C\T ′

cosh ◦η continuously extends across T ′

Then apply Morrey-Ahlfors-Bers measurable Riemann mapping theorem:

∃ an entire function f and a quasiconformal map φ such that
f ◦ φ = cosh ◦τ off T (r0)



ℂ ℍr

τ

T

Ω



ℂ ℍr

τ

η

T(r )0 Ω



ℂ ℍr

τ

-1 +1

ℂ

cosh

η

T(r )0 Ω



ℂ ℍr

τ

-1 +1

ℂ

coshϕ
ℂ

ϕ(T')

η

ϕ(T)

T(r )0 Ω



ℂ ℍr

τ

-1 +1

ℂ

coshϕ
ℂ

f

ϕ(T')

η

ϕ(T)

T(r )0 Ω



Solution: Modify (T , τ) in a small neighborhood T (r0) of T .

More precisely, replace (T , τ) by (T ′, η) such that
T ⊂ T ′ ⊂ T (r0)

η = τ off T (r0)

η|Ω′ : Ω′ → Hr is K -quasiconformal, ∀Ω′ c.c. of C\T ′

cosh ◦η continuously extends across T ′

Then apply measurable Riemann mapping theorem:

∃ an entire function f and a quasiconformal map φ such that
f ◦ φ = cosh ◦τ off T (r0)



The neighborhood of T
∀r > 0, define an open neighborhood of T as follows

T (r) =
⋃

e edge of T

{
z ∈ C / dist(z , e) < r diam(e)

}

T(r)

z

dist(z,e)
diam(e) =r

e



Lemma 0
If T has bounded geometry, namely ∃M > 0 such that

1 edges of T are C2 with uniform bounds
2 angles between adjacent edges are uniformly bounded away from 0
3 ∀e, f adjacent edges, 1

M 6
diam(e)
diam(f ) 6 M

4 ∀e, f non-adjacent edges, diam(e)
dist(e,f ) 6 M

then ∃r0 > 0 such that

∀Ω c.c. of C\T , ∀ square Q ⊂ Hr that has a τ|Ω-edge as one side,

Q ⊂ τ|Ω
(
T (r0) ∩ Ω

)
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Lemma 0
If T has bounded geometry,
then ∃r0 > 0 such that

∀Ω c.c. of C\T , ∀ square Q ⊂ Hr that has a τ|Ω-edge as one side,
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Theorem 1 (Bishop 2012)
If (T , τ) satisfies the following conditions

1 T has bounded geometry
2 every edge has τ -size > π

then ∃ an entire function f and a quasiconformal map φ such that

f ◦ φ = cosh ◦τ off T (r0)

Moreover
f has exactly two critical values, −1 and +1
f has no finite asymptotic values
φ(T ) ⊂ f −1([−1,+1]) (= φ(T ′))

∀c critical point of f , degloc(c , f ) = deg(c , φ(T ′))
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Generalization: Can we construct f with
more critical values than only −1 and +1 ?
some finite asymptotic values ?
arbitrary high degree critical points ?



Solution: Let T be an infinite bipartite graph.

The c.c. of C\T are sorted in three different types:
R-components: τ|Ω : Ω→ Hr conformally
D-components: τ|Ω : Ω→ D conformally
L-components: τ|Ω : Ω→ H` conformally

More precisely:

R Ω
τ|Ω−−−→ Hr

cosh−−−→ C\[−1,+1]

D
τ|Ω−−−→

z 7→zdΩ−−−→ (D, 0)
ρΩ−−−→ (D,wΩ)

L
τ|Ω−−−→

exp−−−→ (D, 0)
ρΩ−−−→ (D, vΩ)

where ρΩ : D→ D is quasiconformal with ρΩ(z) = z , ∀z ∈ ∂D.
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Theorem 2 (Bishop 2012)
If (T , τ) satisfies the following conditions

1 T has bounded geometry
2 on R-components, every edge has τ -size > π
3 D,L-components only share edges with R-components

then ∀ (dΩ > 2,wΩ ∈ 3
4D)Ω∈{D-components} and (vΩ ∈ 3

4D)Ω∈{L-components},
∃ an entire function f and a quasiconformal map φ such that

f ◦ φ = σ ◦ τ off T (r0) with σ(z) =


cosh(z) on R-components
ρΩ(zdΩ) on D-components
ρΩ(exp(z)) on L-components

Moreover
quasiconformal foldings only occur in R-components
the only critical values of f are ±1 and (wΩ)Ω∈{D-components}

the only asymptotic values of f are (vΩ)Ω∈{L-components}

∀ D-component Ω, ∃c ∈ φ(Ω) crit. point of f with degloc(c , f ) = dΩ
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Corollary (Bishop 2012)
Let E ,F ⊂ C be two bounded countable sets with card(E ) > 2.
Then ∃ an entire function f such that

E is the set of critical values of f
F is the set of asymptotic values of f
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Theorem 1 (Bishop 2012)
If (T , τ) satisfies the following conditions

1 T has bounded geometry
2 every edge has τ -size > π

then ∃ an entire function f and a quasiconformal map φ such that

f ◦ φ = cosh ◦τ off T (r0)

Moreover
f has exactly two critical values, −1 and +1
f has no finite asymptotic values
φ(T ) ⊂ f −1([−1,+1]) (= φ(T ′))

∀c critical point of f , degloc(c , f ) = deg(c , φ(T ′))
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Idea of the proof: Construct (T ′, η) such that
T ⊂ T ′ ⊂ T (r0)

η = τ off T (r0)

η|Ω′ : Ω′ → Hr is K -quasiconformal, ∀Ω′ c.c. of C\T ′

cosh ◦η continuously extends across T ′

Main problem: the behavior of cosh on the two τ -edges of e, ∀ egde e.

More precisely, ∀n ∈ Z, cosh : iπ[n, n + 1]
homeo−−−→ [−1,+1]

but
1 the two τ -edges of e are not of the form iπ[n, n + 1] in general
2 the two τ -edges of e have different size in general (but > π)
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Particular case: ∀ edge e, the two τ -edges of e have same size > π.

Lemma 1
∃K > 1 such that
∀Ω c.c. of C\T , ∃ a map (λΩ ◦ ıΩ) : τ|Ω(Ω) = Hr → Hr such that

(i) (λΩ ◦ ıΩ) = Id off τ|Ω
(
T (r0) ∩ Ω

)
(ii) (λΩ ◦ ıΩ) : τ|Ω(Ω) = Hr → Hr is K -quasiconformal
(iii) ∀ edge e ⊂ ∂Ω1∩∂Ω2, (λΩj ◦ ıΩj )◦ τ|Ωj continuously extends to e with{ (

(λΩj ◦ ıΩj ) ◦ τ|Ωj

)
(e) = iπ[nj , nj + (2k + 1)] with nj ∈ Z, k ∈ N

(λΩ1 ◦ ıΩ1) ◦ τ|Ω1 − (λΩ2 ◦ ıΩ2) ◦ τ|Ω2 = iπ(n1 − n2) ∈ iπ2Z on e



{
ıΩ : Hr → Hr moves the vertices into iπZ
λΩ : Hr → Hr fixes iπZ and makes the continuity across T
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cosh(iπZ) = {−1,+1} leads to extra vertices.
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Particular case: ∀ edge e, the two τ -edges of e have same size > π.

Using Lemma 1, define{
η|Ω = (λΩ ◦ ıΩ) ◦ τ|Ω, ∀Ω c.c. of C\T
T ′ = T with extra vertices coming from η−1(iπZ)

then

(i) =⇒ η = τ off T (r0)
(ii) =⇒ η|Ω′ : Ω′ → Hr is K -quasiconformal, ∀Ω′ c.c. of C\T ′
(iii) =⇒ cosh ◦η continuously extends across T ′



General case: by proceeding as for the particular case, we may assume that

∀ edge e ⊂ ∂Ω1 ∩ ∂Ω2, τ|Ωj continuously extends to e with
τ|Ωj (e) = iπ[nj , nj + (2kj + 1)] with nj ∈ Z, kj ∈ N

Lemma 2 (quasiconformal folding)
∃K > 1 such that
∀Ω c.c. of C\T , ∃ a map ψΩ : WΩ ⊂ Hr → Hr such that

(o) ∂WΩ is a smooth tree with ∂Hr ⊂ ∂WΩ ⊂ τ|Ω
(
T (r0) ∩ Ω

)
(i) ψΩ = Id off τ|Ω

(
T (r0) ∩ Ω

)
(ii) ψΩ : WΩ ⊂ Hr → Hr is K -quasiconformal
(iii) ∀ edge e ⊂ ∂WΩ1 ∩ ∂WΩ2 , ψΩj ◦ τ|Ωj continuously extends to e with{ (

ψΩj ◦ τ|Ωj
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ψΩ : WΩ → Hr maps every τ -edge onto a segment in ∂Hr of length π
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Problem: Find a quasiconformal map ψ from a square to itself such that{
ψ maps the left side to an edge of length π
ψ acts as identity on the right side

Solution: Add some extra edges and “unfold”.

ψ

3π π

ψ−1 is called a quasiconformal folding.
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BUT
the dilatation of ψ should be uniformly bounded

independently of the square size.



ψ -1









ψΩ : WΩ → Hr maps every τ -edge onto a segment in ∂Hr of length π

ℂ ℍr

τ

Ω

ℍr

ψ

T WΩ

τ−1
|Ω (∂WΩ) leads to extra vertices and edges.
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General case: by proceeding as for the particular case, we may assume that

∀ edge e ⊂ ∂Ω1 ∩ ∂Ω2, τ|Ωj continuously extends to e with
τ|Ωj (e) = iπ[nj , nj + (2kj + 1)] with nj ∈ Z, kj ∈ N

Lemma 2 (quasiconformal folding)
∃K > 1 such that
∀Ω c.c. of C\T , ∃ a map ψΩ : WΩ ⊂ Hr → Hr such that

(o) ∂WΩ is a smooth tree with ∂Hr ⊂ ∂WΩ ⊂ τ|Ω
(
T (r0) ∩ Ω

)
(i) ψΩ = Id off τ|Ω

(
T (r0) ∩ Ω

)
(ii) ψΩ : WΩ ⊂ Hr → Hr is K -quasiconformal
(iii) ∀ edge e ⊂ ∂WΩ1 ∩ ∂WΩ2 , ψΩj ◦ τ|Ωj continuously extends to e with{ (

ψΩj ◦ τ|Ωj

)
(e) = iπ[mj ,mj + 1] with mj ∈ Z

ψΩ1 ◦ τ|Ω1 − ψΩ2 ◦ τ|Ω2 = iπ(m1 −m2) ∈ iπ2Z on e



General case: by proceeding as for the particular case, we may assume that

∀ edge e ⊂ ∂Ω1 ∩ ∂Ω2, τ|Ωj continuously extends to e with
τ|Ωj (e) = iπ[nj , nj + (2kj + 1)] with nj ∈ Z, kj ∈ N

Using Lemma 2, define{
η|Ω = ψΩ ◦ τ|Ω, ∀Ω c.c. of C\T
T ′ = T with extra vertices and edges coming from η−1(∂Hr )

then

(i) =⇒ η = τ off T (r0)
(ii) =⇒ η|Ω′ : Ω′ → Hr is K -quasiconformal, ∀Ω′ c.c. of C\T ′
(iii) =⇒ cosh ◦η continuously extends across T ′
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Tak for din opmærksomhed !
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Wandering under Bishop’s trees
-

Existence and non-existence of wandering domains for entire functions

Sébastien Godillon



Wandering domain
Let f be a rational map or a transcendental entire function.
A Fatou domain U of f is said to be wandering if

∀n 6= m, f n(U) ∩ f m(U) = ∅

Sullivan, 1985
If f is a rational map then f has no wandering domains.

Main tools: quasiconformal deformations

Singular set
Let f : C→ C be a transcendental entire function.
Denote by S(f ) = Crit(f ) ∪Asym(f ) the set of finite singular values.

Eremenko-Lyubich, Goldberg-Keen, 1986
If |S(f )| < +∞ then f has no wandering domains.

Main tools: quasiconformal deformations
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Baker, 1975
If U is a multiply connected Fatou domain of f then U is wandering.

Baker, 1976

g(z) =
1
4e

z2
∞∏

n=1

(
1 +

z
γn

)
for suitable γn > 1

has (multiply connected and hence) wandering domains.

Herman, 1981{
f1(z) = z − 1 + e−z + 2πi
f2(z) = z + e2πiα−1

2π sin(2πz) + 1 for suitable α ∈ R

both have (simply connected) wandering domains.

(Devaney et al., 1989) ??

f3(z) = z + 2π sin(z)

has wandering domains.



Baker, 1976

g(z) =
1
4e

z2
∞∏

n=1

(
1 +

z
γn

)
for suitable γn > 1

has (multiply connected) wandering domains.

Herman, 1981{
f1(z) = z − 1 + e−z + 2πi
f2(z) = z + e2πiα−1

2π sin(2πz) + 1 for suitable α ∈ R

both have (simply connected) wandering domains.

(Devaney et al., 1989) ??

f3(z) = z + 2π sin(z)

has wandering domains.



Baker, 1976

g(z) =
1
4e

z2
∞∏

n=1

(
1 +

z
γn

)
for suitable γn > 1

has (multiply connected) wandering domains.

Herman, 1981{
f1(z) = z − 1 + e−z + 2πi
f2(z) = z + e2πiα−1

2π sin(2πz) + 1 for suitable α ∈ R

both have (simply connected) wandering domains.

(Devaney et al., 1989) ??

f3(z) = z + 2π sin(z)

has wandering domains.



Fatou, 1920
If U is wandering then every limit function of {f n|U}n>1 is constant.
In particular, U is either:

escaping: ∀(nk), f nk |U −−−→
k→+∞

∞
oscillating: ∃(nk ,mk), f nk |U −−−→

k→+∞
∞ and f mk |U −−−→

k→+∞
a ∈ J (f )

bounded: ∀(nk), f nk |U −−6−→
k→+∞

∞

Baker, 1976
If f nk |U −−−→

k→+∞
a then a ∈ E ∪ {∞} where E =

⋃
s∈S(f )

⋃
n>1 f n(s).

Bergweiler et al., 1993
If f nk |U −−−→

k→+∞
a then a ∈ E ′ ∪ {∞}.

z 7→ exp(z), z 7→ sin(z)
z , and z 7→ π2

π2−z2 sin(z) have no wandering domains.
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Eremenko-Lyubich, 1987
∃ an entire function f which has (Fatou domains with infinitely many finite
constant limit functions and hence) oscillating wandering domains.

Main tool: approximation theory

Singh, 2003
∃ two entire functions f , g and a domain U ⊂ C which lies in{

a periodic domain for f , g , and g ◦ f
a wandering domain for f ◦ g

However g ◦ f must have wandering domains (Bergweiler-Wang, 1998).

Main tool: approximation theory

Question: Do there exist f , g which both have no wandering domains
but whose composition f ◦ g has some ?
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Eremenko-Lyubich’s class

B =
{

f : C→ C entire function such that S(f ) is bounded
}

Eremenko-Lyubich, 1992
If f ∈ B then any wandering domain is either oscillating or bounded.

Main result: I(f ) ⊂ J (f ) (and hence J (f ) = I(f ))

Mihaljević-Rempe, 2012
If f ∈ B satisfies sups∈S(f ) |f n(s)| −−−→

n→+∞
+∞ and a certain condition (?)

then f has no wandering domains.

Main tool: hyperbolic geometry

z 7→ λ sinh(z)
z + a for every λ, a ∈ R has no wandering domains.
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Bishop, 2012
∃ an entire function f ∈ B which has (oscillating) wandering domains
(with infinitely many finite constant limit functions).

Main tool: Bishop’s construction by quasiconformal foldings



Wandering under Bishop’s trees
-

Examples of wandering domains in Eremenko-Lyubich’s class

Sébastien Godillon



Bishop, 2012
∃ an entire function f ∈ B which has (oscillating) wandering domains
(with infinitely many finite constant limit functions).

Main tool: Bishop’s construction by quasiconformal foldings



Bishop’s example is of the form:

f = F ◦ φ with
{

F : C→ C quasiregular (transcendental)
φ : C→ C quasiconformal so that µφ−1 = F ∗(µ0)

Moreover,
∀z ∈ C, F (−z) = F (z) and F (z) = F (z)

Crit(F ) = {−1,+1} ∪ {wn, n > 1} ∪
{1

2

}
⊂ D with wn −−−→

n→+∞

1
2

Asym(F ) = ∅
=⇒ the same holds for f as well.

supp (F ∗(µ0)) is small enough in order that we may find φ ≈ IdC
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F is constructed following an infinite graph.
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F is constructed following an infinite graph.

S+

D1 2D 3D 5D4D



F maps
{

straight lines onto [−1,+1]
circle arcs onto ∂D

S+

D1 2D 3D 5D4D

-1 +1

F



F : S+ λ sinh−−−−−→ Hr
cosh−−−−−→ C\[−1,+1]

z |−−−−−−−−−−−−−−−−−−−→ cosh(λ sinh(z))

S+

-1 +1

λsinh

ℂ

ℍr
cosh

for some parameter λ > 0 .
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For every n > 1,

F : (Dn, zn)
z 7→(z−zn)dn
−−−−−→ (D, 0)

ρn−−−−−→ (D,wn)
z |−−−−−−−−−−−−−−−−−−−→ ρn

(
(z − zn)dn

)
with


ρn : D→ D quasiconformal
ρn(0) = wn

supp(µρn) ⊂
{1

2 6 |z | 6 1
}

Dn
(z- )

dnzn

� �

� � �

0zn

wn

1/2

ρn

for some parameters dn −−−→
n→+∞

+∞ and wn −−−→
n→∞

1
2 .
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Using Bishop’s construction by quasiconformal foldings,
F may be extended to a quasiregular map F : C→ C such that:

∀z ∈ C, F (−z) = F (z) and F (z) = F (z)

Crit(F ) = {−1,+1} ∪ {wn, n > 1} ∪
{1

2

}
⊂ D with wn −−−→

n→+∞

1
2

Asym(F ) = ∅

supp (F ∗(µ0)) is small enough

in order that φ|S+ ≈ IdS+

S+

D1 2D 3D 5D4D

-1 +1

F

Let f = F ◦ φ with φ : C→ C quasiconformal so that µφ−1=F∗(µ0).
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Choice of the parameters (λ, (dn)n>1, (wn)n>1)

λ > 0 is fixed so that f n (1
2

)
−−−→
n→+∞

+∞ very fast.

∀x ∈ R, f (x) = cosh
(
λ sinh

(
φ|R(x)

))
≈ 1

2
exp
(
λ

2
exp(x)

)
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(1
4

)d̃n
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Choice of the parameters (λ, (dn)n>1, (wn)n>1)

λ > 0 is fixed so that f n (1
2

)
−−−→
n→+∞

+∞ very fast.

d̃n −−−→
n→+∞

+∞ and w̃n −−−→
n→∞

1
2 are fixed so that

∀n > N, f n+1(Un) = f
(
1
4
D̃n

)
⊂ Un+1.

Therefore,

UN
f N+1

−−−−−→ UN+1
f N+2

−−−−−→ UN+2
f N+3

−−−−−→ UN+3
f N+4

−−−−−→ . . .
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Fagella-G-Jarque, 2013
Bishop’s example has no unexpected wandering domains.

Main ingredients of the proof:
Let W be a wandering domain of f (in the upper half plane).

1 Baker’s argument

(here E ′ =
{
f n (1

2

)}
n>1)

∃(nk) such that

{
f nk |W −−−→

k→+∞

1
2

f nk−1(W ) ⊂ Dmk for some mk

2 Mihaljević-Rempe’s hyperbolic geometry lemma

distU
(
f nk−1(W ),U\f −1(D)

)
−−−→
k→+∞

+∞

where U = C\
([1

2 ,+∞
[
∪
⋃

n>N
⋃n

j=1 f j(Un)
)

=⇒

{
f nk−1(W ) ⊂ D̃pk for some pk

distC
(
f nk−1(W ), 1

4 D̃pk

)
−−−→
k→+∞

0

Therefore W is eventually mapped into some Un.
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Fagella-G-Jarque, 2013
Bishop’s example has no unexpected wandering domains.

Corollary
∃ two entire functions f , g (in B) which both have no wandering domains
but whose composition f ◦ g has some.

Strategy of the proof:
Construct f , g like Bishop’s example.

Chose the parameters d̃n −−−→
n→+∞

+∞ and w̃n −−−→
n→∞

1
2 so that:

∀k > N,


f 4k+1(U4k ) ⊂ U4k+1
f 4k+2(U4k+1) ⊂ U4k+2

f 4k+3(U4k+2) ⊂ U4k+3
f 4k+4(U4k+3) ⊂ U4k+3

and



g4k+1(U4k ) ⊂ U4k+1
g4k+2(U4k+1) ⊂ U4k+1

g4k+3(U4k+2) ⊂ U4k+3
g4k+4(U4k+3) ⊂ U4k+4
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