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Let f : C — C be a transcendental entire function with
@ exactly two critical values, say —1 and +1

@ no finite asymptotic values

Question: What does f “look like" 77



T = f~1([-1, +1]) is an infinite bipartite tree.
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T = f~1([~1,+1]) is an infinite bipartite tree.
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cosh : H, — C\[—1, +1] is a universal cover.



T = f~1([~1,+1]) is an infinite bipartite tree.
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VQ cc. of C\T, 10 = (cosh™! ofiq) : 2 — H, is conformal.



Conversely: How to construct f from (T,7) 7



Conversely: How to construct f from (T,7) 7

More precisely, given
@ an infinite bipartite tree T C C with “smooth” enough geometry
@ a map 7 such that 7o : Q — H, is conformal, V2 c.c. of C\T

does there exist an entire function f : C — C such that f = coshor 7



Conversely: How to construct f from (T,7) 7

More precisely, given
@ an infinite bipartite tree T C C with “smooth” enough geometry
@ a map 7 such that 7o : Q — H, is conformal, V2 c.c. of C\T

does there exist an entire function f : C — C such that f = coshor 7

Main problem: cosh o7 is not continuous across T in general.



Solution: Modify (T,7) in a small neighborhood T(rp) of T.



Solution: Modify (T,7) in a small neighborhood T(rp) of T.

More precisely, replace (T,7) by (T’,7n) such that
e TCT CT(n)
e 1 =1 off T(ry)
o 7o : Q' — H, is K-quasiconformal, ¥Q' c.c. of C\ T’

@ cosh on continuously extends across T’



Solution: Modify (T,7) in a small neighborhood T(rp) of T.

More precisely, replace (T,7) by (T’,7n) such that
e TCT CT(n)
e 1 =1 off T(ry)
o 7o : Q' — H, is K-quasiconformal, ¥Q' c.c. of C\ T’

@ cosh on continuously extends across T’
Then apply Morrey-Ahlfors-Bers measurable Riemann mapping theorem:

3 an entire function f and a quasiconformal map ¢ such that
f o ¢ = cosh ot off T(rp)
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Solution: Modify (T,7) in a small neighborhood T(rp) of T.

More precisely, replace (T,7) by (T’,n) such that
e TCT CT(n)
e 1 =1 off T(ry)
o 7o : Q' — H, is K-quasiconformal, ¥Q' c.c. of C\ T’

@ cosh on continuously extends across T’

Then apply measurable Riemann mapping theorem:

3 an entire function f and a quasiconformal map ¢ such that
f o ¢ = cosh ot off T(rp)



The neighborhood of T

Vr > 0, define an open neighborhood of T as follows

T(r)= U {z e C / dist(z,e) < rdiam(e)}
e edge of T




If T has bounded geometry, namely 3M > 0 such that
@ edges of T are C? with uniform bounds
@ angles between adjacent edges are uniformly bounded away from 0

© Ve, f adjacent edges, 4; < 3225?; <M

@ Ve, f non-adjacent edges, élllsilé(?) sM

then Jry > 0 such that

VQ c.c. of C\T, V square Q C H, that has a 7o-edge as one side,
Q C 7’|Q(T(f0) N Q)




If T has bounded geometry,
then 3ry > 0 such that

VQ c.c. of C\T, V square Q C H, that has a 7o-edge as one side,
Qc T|Q<T(ro) N Q)




Theorem 1 (Bishop 2012)

If (T, ) satisfies the following conditions

@ T has bounded geometry
@ every edge has 7-size >

then 3 an entire function f and a quasiconformal map ¢ such that
f o ¢ = cosh ot off T(rp)

Moreover
o f has exactly two critical values, —1 and +1
@ f has no finite asymptotic values
o §(T) C FH([-1,+1]) (= o(T")
@ Vc critical point of f, degioc(c, f) = deg(c, p(T"))
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Generalization: Can we construct f with
@ more critical values than only —1 and +1 7
@ some finite asymptotic values ?

@ arbitrary high degree critical points ?



Solution: Let T be an infinite bipartite graph.



Solution: Let T be an infinite bipartite graph.

The c.c. of C\T are sorted in three different types:
R-components:  7q : Q — H, conformally
D-components: 7 : 2 — D conformally
L-components: 7 : Q2 — Hj conformally
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More precisely:
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Solution: Let T be an infinite bipartite graph.

The c.c. of C\T are sorted in three different types:
7o : © — H, conformally
7o : 2 — D conformally

7o : © — Hj conformally

R-components:
D-components:
L-components:

More precisely:

cosh

R Q e Hr C\[_17+1]
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Solution: Let T be an infinite bipartite graph.

The c.c. of C\T are sorted in three different types:
7o : © — H, conformally
7o : 2 — D conformally

7o : © — Hj conformally

R-components:
D-components:
L-components:

More precisely:

cosh

R Q e Hr C\[_17+1]
Q%) -2 D,0) 2% (o)
L| (Qo0) —25 (Hy,-00) —25 (D,0)




Solution: Let T be an infinite bipartite graph.

The c.c. of C\T are sorted in three different types:

R-components:  7q : Q© — H, conformally
D-components: 7| : 2 — D conformally
L-components: 7o : Q2 — Hj conformally

More precisely:

R Q e, H, _Cosh, C\[-1, +]]
Q%) —2% (o) % o) —2 (D, wg)
L] (Q00) —2% (Hy-0) —25 (0,00 25 (D, v)

where pq : D — D is quasiconformal with pq(z) = z, Vz € ID.




Theorem 2 (Bishop 2012)

If (T, 7) satisfies the following conditions

© T has bounded geometry
@ on R-components, every edge has 7-size > w

© D,L-components only share edges with R-components

3 3
then V (dQ Z2,wq € ZD)QE{D—components} and (VQ = ZD)QE{L—components}v
3 an entire function f and a quasiconformal map ¢ such that

cosh(z) on R-components
fop=ocoroff T(rn) witho(z) =14 pa(z®) on D-components
pa(exp(z)) on L-components
Moreover
@ quasiconformal foldings only occur in R-components
@ the only critical values of f are 4-1 and (wq)oe{D-components}
o the only asymptotic values of  are (va)ae{L-components}
@ V D-component Q, 3¢ € ¢(Q) crit. point of f with degjoc(c, f) = do










Corollary (Bishop 2012)

Let E, F C C be two bounded countable sets with card(E) > 2.
Then 3 an entire function f such that

@ E is the set of critical values of f

@ F is the set of asymptotic values of f
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Theorem 1 (Bishop 2012)

If (T, ) satisfies the following conditions

@ T has bounded geometry
@ every edge has 7-size >

then 3 an entire function f and a quasiconformal map ¢ such that
f o ¢ = cosh ot off T(rp)

Moreover
o f has exactly two critical values, —1 and +1
@ f has no finite asymptotic values
o §(T) C FH([-1,+1]) (= o(T")
@ Vc critical point of f, degioc(c, f) = deg(c, p(T"))
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Idea of the proof: Construct (7’,7n) such that
e TCT CT(n)
e n =17 off T(r)
o 7 : Q' — H, is K-quasiconformal, ¥Q' c.c. of C\ T’

@ cosh on continuously extends across T’



Idea of the proof: Construct (7’,7n) such that
e TCT CT(n)
e n =17 off T(r)
o 7 : Q' — H, is K-quasiconformal, ¥Q' c.c. of C\ T’

@ cosh on continuously extends across T’

Main problem: the behavior of cosh on the two T-edges of e, V egde e.



Idea of the proof: Construct (7’,7n) such that
e TCT CT(n)
e n =17 off T(r)
o 7 : Q' — H, is K-quasiconformal, ¥Q' c.c. of C\ T’

@ cosh on continuously extends across T’

Main problem: the behavior of cosh on the two T-edges of e, V egde e.
More precisely, Vn € Z, cosh : in[n, n + 1] _homeo, [—1,+1]
but

@ the two T-edges of e are not of the form im[n, n + 1] in general

@ the two T-edges of e have different size in general (but > 7)



Particular case: V edge e, the two T-edges of e have same size > 7

Lemma 1

3K > 1 such that
VQ c.c. of C\T, 3 a map (A o) : 110(Q) = H, — H, such that

(i) (M o1q) = Id off T‘Q(T(ro) N Q)
(i) (MA@ oq): 7a(R2) = H, — H, is K-quasiconformal
(iii) V edge e C 001 NOQy, (AQ 010, )OT|Q continuously extends to e with

( o 010, OT,Q)(e) — in[nj, nj+ (2k +1)] with n; € Z,k € N
(A, 010,) 0 Tja, — (A, 019,) 0 T, = iT(n — ) € iT2Z on e




{

1q : H, — H, moves the vertices into itZ
Aq : H, — H, fixes iwZ and makes the continuity across T
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{

1q : H, — H, moves the vertices into itZ

Aq : H, — H, fixes iwZ and makes the continuity across T
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cosh(inZ) = {—1,+1} leads to extra vertices.




Particular case: V edge e, the two T-edges of e have same size > 7.

Using Lemma 1, define

N = (Aacwq) o, ¥Q cc. of C\T
T’ = T with extra vertices coming from 1~ 1(inZ)

then

(i) = n=r7off T(n)

(i) = ngo :Q — H, is K-quasiconformal, V' c.c. of C\ T’
(i) = coshon continuously extends across T’



General case: by proceeding as for the particular case, we may assume that

V edge e C 001 N0y, o, continuously extends to e with
T|Qj(e) = iw[nj, n; + (ij + ].)] with nj € Z, kj eN



General case: by proceeding as for the particular case, we may assume that

V edge e C 001 N0y, o, continuously extends to e with
T|Qj(e) = i7r[nj, n; + (ij + ].)] with nj € Z, kj eN

Lemma 2 (quasiconformal folding)

3K > 1 such that
VQ c.c. of C\T, 3 a map ¢q : W C H, — H, such that

(o) OWq is a smooth tree with 9H, C OWq C T|Q(T(r0) N Q)
(i) ¥ = Id off Tm( (ro) N Q)
(i) ¥q: Wq C H, — H, is K-quasiconformal
(iii) V edge e C OWq, N OWhq,, g o o, continuously extends to e with

(1/19/. o 7-|Qj)(e) = im[mj,m; +1] with m; € Z
le OT|Q; — 1/}92 o ’7'|Q2 = i7r(m1 — m2) € im2Z, on e




g : Wo — H, maps every T-edge onto a segment in OH, of length 7
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Problem: Find a quasiconformal map v from a square to itself such that

1) maps the left side to an edge of length 7
1 acts as identity on the right side

3m




Problem: Find a quasiconformal map v from a square to itself such that

1) maps the left side to an edge of length 7
1 acts as identity on the right side

Solution: Add some extra edges and “unfold”.
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Problem: Find a quasiconformal map v from a square to itself such that

1) maps the left side to an edge of length 7
1 acts as identity on the right side

Solution: Add some extra edges and “unfold”.

3m 1'r<

11 is called a quasiconformal folding.



Problem: Find a quasiconformal map v from a square to itself such that
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Problem: Find a quasiconformal map v from a square to itself such that

1) maps the left side to an edge of length 7
1 acts as identity on the right side

Solution: Add some extra edges and “unfold”.
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Problem: Find a quasiconformal map v from a square to itself such that

1) maps the left side to an edge of length 7
1 acts as identity on the right side

Solution: Add some extra edges and “unfold”.

51 TT(

11 is called a quasiconformal folding.
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Problem: Find a quasiconformal map v from a square to itself such that

1) maps the left side to an edge of length 7
1 acts as identity on the right side

Solution: Add some extra edges and “unfold”.
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Problem: Find a quasiconformal map v from a square to itself such that

1) maps the left side to an edge of length 7
1 acts as identity on the right side

Solution: Add some extra edges and “unfold”.

131

11 is called a quasiconformal folding.
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1o : Wo — H, maps every T-edge onto a segment in OH, of length 7
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1o : Wo — H, maps every T-edge onto a segment in OH, of length 7
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Tlgzl(aWQ) leads to extra vertices and edges.



General case: by proceeding as for the particular case, we may assume that

V edge e C 001 N0y, o, continuously extends to e with
T|Qj(e) = i7r[nj, n; + (ij + ].)] with nj € Z, kj eN

Lemma 2 (quasiconformal folding)

3K > 1 such that
VQ c.c. of C\T, 3 a map ¢q : W C H, — H, such that

(o) OWq is a smooth tree with 9H, C OWq C T|Q(T(r0) N Q)
(i) ¥ = Id off Tm( (ro) N Q)
(i) ¥q: Wq C H, — H, is K-quasiconformal
(iii) V edge e C OWq, N OWhq,, ¥q; o o, continuously extends to e with

(1/19/. o 7-|Qj)(e) = im[mj,m; +1] with m; € Z
le OT|Q; — 1/}92 o ’7'|Q2 = i7r(m1 — m2) € im2Z, on e




General case: by proceeding as for the particular case, we may assume that

V edge e C 001 N0y, o, continuously extends to e with
T|Qj(e) = i7r[nj, n; + (2/(_,' + ].)] with nj € Z, kj eN

Using Lemma 2, define

77|Q = wQ o TIQ; VQ c.c. of (C\T
T’ = T with extra vertices and edges coming from ~1(9H,)

then

(i) = n=r7off T(n)
(i) = ngo :Q — H, is K-quasiconformal, V' c.c. of C\ T’
(i) = coshon continuously extends across T’
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Wandering domain

Let f be a rational map or a transcendental entire function.
A Fatou domain U of f is said to be wandering if

Vn#m, f"(U)nf™(U)=10
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If £ is a rational map then f has no wandering domains.

Main tools: quasiconformal deformations
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Singular set

Let f : C — C be a transcendental entire function.
Denote by S(f) = Crit(f) U Asym(f) the set of finite singular values.




Wandering domain

Let f be a rational map or a transcendental entire function.
A Fatou domain U of f is said to be wandering if

Vn#m, f"(U)nf™(U)=10

Sullivan, 1985

If £ is a rational map then f has no wandering domains.

Main tools: quasiconformal deformations

Singular set

Let f : C — C be a transcendental entire function.
Denote by S(f) = Crit(f) U Asym(f) the set of finite singular values.

Eremenko-Lyubich, Goldberg-Keen, 1986

If |S(f)| < +oo then f has no wandering domains.

Main tools: quasiconformal deformations



Baker, 1975
If U is a multiply connected Fatou domain of f then U is wandering.

Baker, 1976

1 ad z .
g(z) = _eZ2 H <1 + —) for suitable v, > 1

has (multiply connected and hence) wandering domains.




Baker, 1976

= —ZT[(1+ =) for suitable v, > 1
g(z) 22 H(—{— or suitable v, >

has (multiply connected) wandering domains.

Herman, 1981

f(z )—z—1—|-e_ + 27i
h(z)=z+ &5— o Lsin(2rz) +1 for suitable a € R

both have (simply connected) wandering domains.




Baker, 1976

i z .
g(z) = Y H <1 + —) for suitable v, > 1

has (multiply connected) wandering domains.

Herman, 1981

f(z )—z—1+e_z+27ri
h(z)=z+ ¢ 2ol sin(2rz) + 1 for suitable « € R

both have (simply connected) wandering domains.

A\

(Devaney et al., 1989) 77
f(z) = z + 27sin(z)

has wandering domains.

\




Fatou, 1920

If U is wandering then every limit function of {f"|y}n>1 is constant.
In particular, U is either:
escaping:  V(ng), |y P

oscillating:  3(nk, mk), |y —> oo and k| o€ J(f)
bounded:  V(ng), |y ﬁ% 00

k—+o0
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In particular, U is either:
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Baker, 1976
If £k |y ——a then a € E U {oo} where E = U,cs(r) Uns1 F7(5)-




Fatou, 1920

If U is wandering then every limit function of {f"|y}n>1 is constant.
In particular, U is either:
escaping:  V(ng), |y ——— 00
—r+o0

oscillating:  3(ng, my), F |y —— and |y ——ac J(f)
—+o00 —>+00
bounded:  V(ng), |y —F— 00

| A\

Baker, 1976
If £k |y ——a then a € E U {oo} where E = U,cs(r) Uns1 F7(5)-

| 8
A\

Bergweiler et al., 1993

If £y ——a then a € E' U {o0}.
—+o0

’

1 2
z+— exp(z), z+— y and z — —"—

sin(z) have no wandering domains.



Eremenko-Lyubich, 1987
3 an entire function f which has (Fatou domains with infinitely many finite
constant limit functions and hence) oscillating wandering domains.

Main tool: approximation theory
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Main tool: approximation theory

Singh, 2003

3 two entire functions f, g and a domain U C C which lies in

a periodic domain for f, g,and gof
a wandering domain for fog

However g o f must have wandering domains (Bergweiler-Wang, 1998).

Main tool: approximation theory



Eremenko-Lyubich, 1987

3 an entire function f which has (Fatou domains with infinitely many finite
constant limit functions and hence) oscillating wandering domains.

Main tool: approximation theory

Singh, 2003

3 two entire functions f, g and a domain U C C which lies in

a periodic domain for f, g,and gof
a wandering domain for fog

However g o f must have wandering domains (Bergweiler-Wang, 1998).

Main tool: approximation theory

Do there exist f, g which both have no wandering domains

uestion: o\
Q but whose composition f o g has some ?




Eremenko-Lyubich’s class

B= {f : C — C entire function such that S(f) is bounded}




Eremenko-Lyubich’s class

B= {f : C — C entire function such that S(f) is bounded}

Eremenko-Lyubich, 1992

If f € B then any wandering domain is either oscillating or bounded.

Main result: Z(f) € J(f) (and hence J(f) = Z(f))



Eremenko-Lyubich’s class

B= {f : C — C entire function such that S(f) is bounded}

Eremenko-Lyubich, 1992
If f € B then any wandering domain is either oscillating or bounded.

Main result: Z(f) € J(f) (and hence J(f) = Z(f))

Mihaljevi¢-Rempe, 2012
If f € B satisfies supscs(r) |f"(s)| ——— +oo and a certain condition (x)
n—+oo

then f has no wandering domains.

Main tool: hyperbolic geometry

Z )\w + a for every A\, a € R has no wandering domains.



Bishop, 2012

3 an entire function f € B which has (oscillating) wandering domains
(with infinitely many finite constant limit functions).

Main tool: Bishop's construction by quasiconformal foldings
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Bishop, 2012

3 an entire function f € B which has (oscillating) wandering domains
(with infinitely many finite constant limit functions).

Main tool: Bishop's construction by quasiconformal foldings



Bishop's example is of the form:

F : C — C quasiregular (transcendental)

f=Fog with { ¢ : C — C quasiconformal so that p;-1 = F*(uo)
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Bishop's example is of the form:

F : C — C quasiregular (transcendental)

f=Fo¢ with { ¢ : C — C quasiconformal so that p;-1 = F*(uo)

Moreover,
o VzeC, F(—z) = F(z) and F(Z) = F(z)
o Crit(F) = {-1,+1}U{wyn, n>1}U {3} C D with w, — 3
n—-+oo
e Asym(F)=10
= the same holds for f as well.



Bishop's example is of the form:

_ : F : C — C quasiregular (transcendental)
f=Fo¢ with { ¢ : C — C quasiconformal so that ju5-1 = F*(u0)

Moreover,
o VzeC, F(—z) = F(z) and F(Z) = F(z)
o Crit(F) = {-1,+1}U{wyn, n>1}U {3} C D with w, — 3

n—-+4o00

e Asym(F)=10
= the same holds for f as well.

@ supp (F*(po)) is small enough in order that we may find ¢ ~ Id¢
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F is constructed following
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F is constructed following an infinite graph.
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£ maps straight lines onto [—1,+1]
P circle arcs onto 0D
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F- S+ Asinh H, cosh (C\[—l,-f-].]
z | > cosh(Asinh(z))

o
| | /Ainh\% o
st / N
g
T T T //

for some parameter .




F- S+ Asinh H, cosh (C\[—l,-f-].]
z | cosh(Asinh(z))
7
Asinh
| | | cosh 7
S+ / /\% o
0 0

for some parameter .

_



For every n > 1,

F: (Dn,zn)
|

zr+(z—2zp)%n

(D, 0)

Pn

L

4 |

pn:D—=Dgq
with ¢ pn(0) = wy,

uasiconformal

for some parameters

dn—>+OO

n—+o00

and

n— oo




For every n > 1,

Z Z—2Zn dn
F: (Dn,zn) M

z

(D,0) —*—

pn - D — D quasiconformal
with ¢ pn(0) = wy,
supp(pp,) C {3 <z <1}

(D, wy)
pn ((z - Zn)d")

for some parameters | d, — +oco | and | w, ——

n—+o0 n—oo




Using Bishop's construction by quasiconformal foldings,
F may be extended to a quasiregular map F : C — C such that:

o Vz€C, F(—z) = F(z) and F(Z) = F(z2)
o Crit(F) = {-1,+1}U{wn, n>1}U {3} C D with w, —— 3

e Asym(F)=10
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Using Bishop's construction by quasiconformal foldings,
F may be extended to a quasiregular map F : C — C such that:

e VzeC, F(—z) = F(z) and F(Z) = F(z2)

o Crit(F) = {-1,+1}U{wn, n>1}U {3} C D with w, —— 3
n—+00

e Asym(F) =10

@ supp (F*(uo)) is small enough in order that ¢|s+ ~ Ids+

Let f = F o ¢ with ¢ : C — C quasiconformal so that f14-1_f=(,,)-



’Choice of the parameters (X, (dp)n>1, (W,,),,;l)‘

° is fixed so that " (3) ——— +o0 very fast.

n—+oo

Vx € R, f(x) = cosh ()\ sinh <¢\R(X)>> R~ %exp (;\ exp(x))



l
l

I:)n Dn+1
"""" T T T




()]

n+1










n n+1
|~
7Dn+1
¢ 0
"""" -1t "~ °-"""/""=—T """~ °=°-°-°
M12) f(1/2) ™)

n -1

and inradius(U,) > (‘g; X:%)

and inradius(U,4+1) >



f"+1(Un+1) = %Dn+1 and inradius(U,+1) > C. (dan‘ >_1
dx x:%

w, € f (%5,,) and diam <f (%5n>> < C (%)5,,
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° is fixed so that " (%) —— +00 very fast.

n—+oo
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’Choice of the parameters (A, (dp)n>1, (w,,)@l)‘

° is fixed so that " (%) —— +00 very fast.

n—+oo

o |d, —— +oo|and |w, ——

n—+o00 n—oo

11 are fixed so that

1~
Yn>N, "YU, =f <4Dn> C Upi1.

Therefore,



n n+1
i 0
"""" ﬁ—"""'ﬁ—"""'T
M1172) (1/2) " 12)
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Bishop's example has no unexpected wandering domains

Main ingredients of the proof:
Let W be a wandering domain of f (in the upper half plane).

O Baker's argument (here £/ = {f" (*)}n>1

nk|W —>
(nk) such that ko0
fr—l(W) Dmk for some my

@ Mihaljevic-Rempe's hyperbolic geometry lemma
disty (F1(W), U\f~H(D)) ——— +oo
—+o0
where U = C\ ([3,+0[ UUon Uiy F(Un)

fr—l(W) Bpk for some py
diste (£ (W), 1Dy, ) —— 0

+oo

Therefore W is eventually mapped into some U,,.
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and |w, —— % so that:

n— oo

gn—>+OO

n—+oo
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Bishop's example has no unexpected wandering domains.

3 two entire functions £, g (in B) which both have no wandering domains
but whose composition f o g has some.

Strategy of the proof:
Construct f, g like Bishop's example.

Chose the parameters g,, —— +oo|and |w, —— % so that:

n—+oo n—oo
f4:+l(U4k ) C Uikt g4z+;(U4k ) C Usksr
F¥2(Usks1) € Uskso g2 (Ugy1) C Uk
Vk = N, + 2 and Ak+1 4k+1
F3(Upig2) C Usss g3 (Uppya) C  Usips
f4k+4(U4k+3) - U4k+3 g4k+4(U4k+3) C U4k+4



