From a tree to a Persian carpet

Sébastien Godillon

Introduction Buried Julia components Encoding by dynamical trees McMullen example A family of Persian carpets A Persian carpet

Definition

- $R:\widehat{\mathbb{C}}
 ightarrow\widehat{\mathbb{C}}$ rational map of degree $d\geqslant 2$
 - The Julia set:

$$\mathcal{J}(R) = \overline{\{\text{repelling periodic points}\}}$$

• The Fatou set:

$$\mathcal{F}(R) = \widehat{\mathbb{C}} - \mathcal{J}(R) = \{\text{points with stable behavior}\}$$

Introduction Buried Julia components Encoding by dynamical trees McMullen example A family of Persian carpets A Persian carpet

Definition

- $R:\widehat{\mathbb{C}}
 ightarrow\widehat{\mathbb{C}}$ rational map of degree $d\geqslant 2$
 - The Julia set:

 $\mathcal{J}(R) = \overline{\{\text{repelling periodic points}\}}$

• The Fatou set:

$$\mathcal{F}(R) = \widehat{\mathbb{C}} - \mathcal{J}(R) = \{\text{points with stable behavior}\}$$

Proposition

 $\mathcal{J}(R)$ is a fully invariant non-empty perfect compact set. Furthermore

- either $\mathcal{J}(R)$ is connected,
- or else $\mathcal{J}(R)$ has uncountably many connected components.

Introduction	Buried Julia components
Encoding by dynamical trees	McMullen example
A family of Persian carpets	A Persian carpet

Definition

A point $z \in \mathcal{J}(R)$ is said **buried** if

\forall Fatou component $F, z \notin \partial F$

Introduction Buried Juli Encoding by dynamical trees A family of Persian carpets A Persian

Buried Julia components McMullen example A Persian carpet

Definition

A point $z \in \mathcal{J}(R)$ is said **buried** if

 \forall Fatou component $F, z \notin \partial F$

Examples (topological models)

Introduction	Buried Julia components
Encoding by dynamical trees	McMullen example
A family of Persian carpets	A Persian carpet

Definition

A point $z \in \mathcal{J}(R)$ is said **buried** if

 \forall Fatou component $F, z \notin \partial F$

Question 0 Does there exist buried Julia components ?

Introduction Buried Julia components Encoding by dynamical trees A family of Persian carpets A Persian carpet

Proposition

If P is a polynomial then

 $\mathcal{J}(P) = \partial B(\infty)$

Introduction Buried Julia components Encoding by dynamical trees McMullen example A family of Persian carpets A Persian carpet

Proposition

If P is a polynomial then

$$\mathcal{J}(P) = \partial B(\infty)$$

Proposition

If R is of degree d = 2 then

- either $\mathcal{J}(R)$ is connected,
- or else $\mathcal{J}(R)$ is a Cantor set.

Introduction Buried Julia components Encoding by dynamical trees A family of Persian carpets A Persian carpet

Proposition

If P is a polynomial then

$$\mathcal{J}(P) = \partial B(\infty)$$

Proposition

- If R is of degree d = 2 then
 - either $\mathcal{J}(R)$ is connected,
 - or else $\mathcal{J}(R)$ is a Cantor set.

Proposition

If the complement of every Julia component of $\mathcal{J}(R)$ is connected then there is no buried Julia component in $\mathcal{J}(R)$.

Introduction	Buried Julia components
Encoding by dynamical trees	McMullen example
A family of Persian carpets	A Persian carpet

Theorem (McMullen 91)

$$g_{n,d,\varepsilon}: z \mapsto z^n + \frac{\varepsilon}{z^d}$$

If $|\varepsilon| > 0$ is small enough and if

$$\frac{1}{n} + \frac{1}{n} < 1 \tag{H0}$$

then $\mathcal{J}(g_{n,d,\varepsilon})$ is a Cantor of Jordan curves.

Buried Julia components McMullen example A Persian carpet

A Cantor of Jordan curves

Sébastien Godillon From a tree to a Persian carpet

Introduction Buried Julia components Encoding by dynamical trees A family of Persian carpets A Persian carpet

Theorem (McMullen 91)

$$g_{n,d,\varepsilon}: z \mapsto z^n + \frac{\varepsilon}{z^d}$$

If $|\varepsilon| > 0$ is small enough and if

$$\frac{1}{n} + \frac{1}{d} < 1 \tag{H0}$$

then $\mathcal{J}(g_{n,d,\varepsilon})$ is a Cantor of Jordan curves. In particular, every wandering Julia component is buried. Introduction Buried Julia components Encoding by dynamical trees A family of Persian carpets A Persian carpet

Theorem (McMullen 91)

$$g_{n,d,\varepsilon}: z \mapsto z^n + \frac{\varepsilon}{z^d}$$

If $|\varepsilon| > 0$ is small enough and if

$$\frac{1}{n} + \frac{1}{d} < 1 \tag{H0}$$

then $\mathcal{J}(g_{n,d,\varepsilon})$ is a Cantor of Jordan curves. In particular, every wandering Julia component is buried.

Question 1 Does there exist buried Julia components for rational maps of degree d < 5 ?

Introduction	Buried Julia components
Encoding by dynamical trees	McMullen example
A family of Persian carpets	A Persian carpet

Theorem (Pilgrim-Tan Lei 00)

If R is geometrically finite then every wandering Julia component of $\mathcal{J}(R)$ is

- either a point,
- or a Jordan curve.

Introduction	Buried Julia components
Encoding by dynamical trees	McMullen example
A family of Persian carpets	A Persian carpet

Theorem (Pilgrim-Tan Lei 00)

If R is geometrically finite then every wandering Julia component of $\mathcal{J}(R)$ is

- either a point,
- or a Jordan curve.

Question 2 Does there exist buried Julia components which are wandering points ?

Introduction	Buried Julia components
Encoding by dynamical trees	McMullen example
A family of Persian carpets	A Persian carpet

Theorem (Pilgrim-Tan Lei 00)

If R is geometrically finite then every wandering Julia component of $\mathcal{J}(R)$ is

- either a point,
- or a Jordan curve.

Question 2 Does there exist buried Julia components which are wandering points ?

Question 3 Does there exist buried Julia components which are neither a point nor a Jordan curve ?

Introduction	Buried Julia components
Encoding by dynamical trees	McMullen example
A family of Persian carpets	A Persian carpet

Theorem

$$f_{\varepsilon}: z \mapsto \frac{(1-\varepsilon)\Big[(1-4\varepsilon+6\varepsilon^2-\varepsilon^3)z-2\varepsilon^3\Big]}{(z-1)^2\Big[(1-\varepsilon-\varepsilon^2)z-2\varepsilon^2(1-\varepsilon)\Big]}$$

If $|\varepsilon| > 0$ is small enough then $\mathcal{J}(f_{\varepsilon})$ contains buried Julia components of several types:

- Wandering Jordan curves
- e wandering (and preperiodic) points
- preperiodic Julia components which are quasiconformally homeomorphic to a finite covering space of $\mathcal{J}\left(z \mapsto \frac{1}{(z-1)^2}\right)$

Buried Julia components McMullen example A Persian carpet

A Persian carpet

McMullen example From a Hubbard tree... ...to a Persian carpet

McMullen example: $g_{n,d,\varepsilon}: z \mapsto z^n + \frac{\varepsilon}{z^d}$

Sébastien Godillon From a tree to a Persian carpet

McMullen example From a Hubbard tree... ...to a Persian carpet

McMullen example: $g_{n,d,\varepsilon}: z \mapsto z^n + \frac{\varepsilon}{z^d}$

∞ (|| || || || || || ((((((() 0

McMullen example From a Hubbard tree... ...to a Persian carpet

McMullen example: $g_{n,d,\varepsilon}: z \mapsto z^n + \frac{\varepsilon}{z^d}$

McMullen example From a Hubbard tree... ...to a Persian carpet

McMullen example: $g_{n,d,\varepsilon} : z \mapsto z^n + \frac{\varepsilon}{z^d}$

Introduction McMullen example Encoding by dynamical trees From a Hubbard tree... A family of Persian carpetsto a Persian carpet

Theorem

 \exists a continuous surjective map $\pi:\widehat{\mathbb{C}}\rightarrow \mathcal{T}$ such that

$$\begin{array}{c} \mathcal{J}(g_{n,d,\varepsilon}) \xrightarrow{g_{n,d,\varepsilon}} \mathcal{J}(g_{n,d,\varepsilon}) \\ \pi \middle| & & \downarrow \pi \\ \mathcal{J}(T) \xrightarrow{\tau} \mathcal{J}(T) \end{array}$$

where $\mathcal{J}(T) \subset T$ is a Cantor set and

 $\forall x \in \mathcal{J}(\mathcal{T}), \, \pi^{-1}(x)$ is a Jordan curve Julia component

Introduction	McMullen example
Encoding by dynamical trees	From a Hubbard tree
A family of Persian carpets	to a Persian carpet

$$P: z \mapsto z^2 + c$$
 with $c \approx -0.157 + 1.032i$

Introduction	McMullen example
Encoding by dynamical trees	From a Hubbard tree
A family of Persian carpets	to a Persian carpet

$$P: z \mapsto z^2 + c$$
 with $c \approx -0.157 + 1.032i$

Let ${\mathcal H}$ be the associated Hubbard tree.

Introduction McMullen example Encoding by dynamical trees A family of Persian carpets ...to a Persian carpet

 $(\mathcal{H}, P|_{\mathcal{H}})$ is conjugated to the dynamical tree (T, τ) .

Introduction	McMullen example
Encoding by dynamical trees	From a Hubbard tree
A family of Persian carpets	to a Persian carpet

Introduction	McMullen example
Encoding by dynamical trees	From a Hubbard tree
A family of Persian carpets	to a Persian carpet

Introduction	McMullen example
Encoding by dynamical trees	From a Hubbard tree
A family of Persian carpets	to a Persian carpet

Let $\mathcal{J}(\mathcal{H})$ be the Cantor set $J(P) \cap \mathcal{H}$.

Introduction McMullen example Encoding by dynamical trees From a Hubbard tree... A family of Persian carpets ...to a Persian carpet

Theorem

 \exists a continuous surjective map $\pi : \widehat{\mathbb{C}} \to \mathcal{H}$ and \exists an invariant subset $\mathcal{J}_{\mathcal{H}}(f_{\varepsilon}) \subset \mathcal{J}(f_{\varepsilon})$ such that

where $\forall x \in \mathcal{J}(\mathcal{H})$, $\pi^{-1}(x)$ is a Julia component. Moreover

- $\pi^{-1}(\alpha)$ is fixed, buried and homeomorphic to $\mathcal{J}\left(z\mapsto \frac{1}{(z-1)^2}\right)$
- $\forall x \in \mathcal{J}(\mathcal{H}) \bigcup_{n \geqslant 0} (\mathcal{P}^{\circ n})^{-1}(lpha), \ \pi^{-1}(x)$ is a Jordan curve

McMullen example From a Hubbard tree... ...to a Persian carpet

Introduction McMullen example Encoding by dynamical trees A family of Persian carpets ...to a Persian carpet

Proof

By quasiconformal surgery:

Introduction McMullen example Encoding by dynamical trees A family of Persian carpetsto a Persian carpet

Introduction	McMullen example
Encoding by dynamical trees	From a Hubbard tree
A family of Persian carpets	to a Persian carpet

Introduction	McMullen example
Encoding by dynamical trees	From a Hubbard tree
A family of Persian carpets	to a Persian carpet

Introduction McMullen example Encoding by dynamical trees A family of Persian carpets ...to a Persian carpet

Introduction Encoding by dynamical trees A family of Persian carpets ...to a Persian carpet

Proof: Cutting up (Step 2)

Introduction Encoding by dynamical trees A family of Persian carpets ...to a Persian carpet

Proof: Folding point (Step 3)

Introduction	McMullen example
Encoding by dynamical trees	From a Hubbard tree
A family of Persian carpets	to a Persian carpet

Proof: Folding point (Step 3)

Introduction McMullen example Encoding by dynamical trees A family of Persian carpets ...to a Persian carpet

Proof: Uniformization (Step 4)

Introduction McMullen example Encoding by dynamical trees A family of Persian carpets ...to a Persian carpet

Proof: Uniformization (Step 4)

From Morrey-Ahlfors-Bers theorem, \exists a quasiconformal map ϕ such that

Introduction McMullen example Encoding by dynamical trees A family of Persian carpetsto a Persian carpet

Introduction	A weighted Hubbard tree
Encoding by dynamical trees	Some obstructions
A family of Persian carpets	Final statement

Generalized problem:

Introduction	A weighted Hubbard tree
Encoding by dynamical trees	Some obstructions
A family of Persian carpets	Final statement

Provide the Hubbard tree \mathcal{H} with a weight function w.

Introduction	A weighted Hubbard tree
Encoding by dynamical trees	Some obstructions
A family of Persian carpets	Final statement

Provide the Hubbard tree \mathcal{H} with a weight function w.

Question: Does there exist a rational map whose exchanging dynamics of Julia components is "encoded" by the weighted Hubbard tree (\mathcal{H}, w) ? Introduction Encoding by dynamical trees A family of Persian carpets Final statement

Step 1: Branching point

Introduction Encoding by dynamical trees A family of Persian carpets Final statement

Step 1: Branching point

Step 1: Branching point

Lemma 1: Topological obstruction

There exists a rational model \hat{f} if and only if

$$\begin{cases} \widehat{d} = \frac{1}{2}(d_0 + d_1 + d_2 - 1) \text{ is an integer} \ge 2\\ \max\{d_0, d_1, d_2\} \leqslant \widehat{d} \end{cases}$$
(H1)

Step 2: Cutting up

Definition (Thurston obstruction)

$$\begin{cases} \tau([\alpha, c_0]) = [\alpha, c_1] \\ \tau([\alpha, c_1]) = [\alpha, c_2] \\ \tau([\alpha, c_2]) = [\alpha, c_0] \cup [c_0, c_3] \\ \tau([c_0, c_3]) = [\alpha, c_1] \cup [\alpha, c_0] \end{cases} \rightarrow M_{\mathcal{H}} = \begin{pmatrix} 0 & \frac{1}{d_0} & 0 & 0 \\ 0 & 0 & \frac{1}{d_1} & 0 \\ \frac{1}{d_2} & 0 & 0 & \frac{1}{d_2} \\ \frac{1}{d_3} & \frac{1}{d_3} & 0 & 0 \end{pmatrix}$$

$$(\mathcal{H}, w) \text{ is said not obstructed if } \lambda(M_{\mathcal{H}}) < 1.$$

A weighted Hubbard tree Some obstructions Final statement

McMullen example

The McMullen example is not obstructed if and only if

$$\lambda(M_T) = \frac{1}{n} + \frac{1}{d} < 1 \tag{H0}$$

Persian carpet example

Step 2: Cutting up

Step 2: Cutting up

Lemma 2: Analytical obstruction

There exists a system of equipotentials of \widehat{f} if and only if

 (\mathcal{H}, w) is not obstructed

Sébastien Godillon From a tree to a Persian carpet

(H2)

Introduction	A weighted Hubbard tree
Encoding by dynamical trees	Some obstructions
A family of Persian carpets	Final statement

Theorem

If the weighted Hubbard tree (\mathcal{H}, w) satisfies

$$\begin{cases} \widehat{d} = \frac{1}{2}(d_0 + d_1 + d_2 - 1) \text{ is an integer} \ge 2\\ \max\{d_0, d_1, d_2\} \leqslant \widehat{d} \end{cases}$$
(H1)

 (\mathcal{H}, w) is not obstructed (H2)

then \exists some rational map $f : \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ of degree $d = \widehat{d} + d_3$ whose exchanging dynamics is "encoded" by (\mathcal{H}, w) .

Introduction	A weighted Hubbard tree
Encoding by dynamical trees	Some obstructions
A family of Persian carpets	Final statement

Question: What happens for more sophisticated trees ?

Introduction A weight Encoding by dynamical trees Some ob A family of Persian carpets Final sta

A weighted Hubbard tree Some obstructions Final statement

Thank you for your attention!

