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Abstract

It is known that the disconnected Julia set of any polynomial map does not contain
buried Julia components. But such Julia components may arise for rational maps. The
first example is due to Curtis T. McMullen who provided a family of rational maps for
which the Julia sets are Cantor of Jordan curves. However all known examples of buried
Julia components, up to now, are points or Jordan curves and comes from rational maps
of degree at least 5.

This paper introduce a family of hyperbolic rational maps with disconnected Julia set
whose exchanging dynamics of postcritically separating Julia components is encoded by
a weighted dynamical tree. Each of these Julia sets presents buried Julia components of
several types: points, Jordan curves, but also Julia components which are neither points
nor Jordan curves. Moreover this family contains some rational maps of degree 3 with
explicit formula that answers a question McMullen raised.

1



Contents
1 Introduction 3

2 Encoding by weighted dynamical trees 6
2.1 McMullen’s example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Persian carpet example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Construction 11
3.1 The branching map f̂ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Cutting along a system of equipotentials . . . . . . . . . . . . . . . . . . . . . 13
3.3 Folding with an annulus-disk surgery . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Preimage of the branching part . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.5 Achievement of the super-attracting cycle of period 4 . . . . . . . . . . . . . . 18
3.6 Uniformization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Properties 23
4.1 Exchanging dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Topology of buried Julia components . . . . . . . . . . . . . . . . . . . . . . . 27

5 Explicit formula in the cubic case 28

6 Appendix 32
6.1 A particular solution of the Hurwitz problem . . . . . . . . . . . . . . . . . . . 32
6.2 An inverse Grötzsch’s inequality . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.3 An annulus-disk holomorphic map . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.4 A separating quasicircle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

References 38

2



1 Introduction
For any rational map f of degree d > 2 on the Riemann sphere Ĉ, we denote by J(f) its Julia
set, namely the closure of the set of repelling periodic points. We recall that J(f) is a fully
invariant non-empty perfect compact set which either is connected or has uncountably many
connected components (see [Bea91], [CG93], [Mil06]). This paper focuses on the disconnected
case. Every connected component of J(f) is called a Julia component and every connected
component of the Fatou set Ĉ− J(f) is called a Fatou domain.

A Julia component is said to be buried if it has no intersection with the boundary of any
Fatou domain. In particular buried Julia components can not occur in the polynomial case
(since the Julia set coincides with the boundary of the unbounded Fatou domain). The same
holds if the Julia set is a Cantor set, or more generally if the complementary of every Julia
component is connected (since the Fatou set is then connected). That suggests much more
sophisticated topological structures for Julia sets with some buried Julia components than
those encountered in the polynomial case.

The first example of rational maps with buried Julia components is due to Curtis T.
McMullen. Consider the family of rational maps given by

gc,λ : z 7→ zd∞ + c+
λ

zd0
where d∞, d0 > 1 and c, λ ∈ C.

The special case c = 0 has been studied in [McM88] (see also [DHL+08]), where it is proved
that if the following condition is satisfied

1

d∞
+

1

d0
< 1 (H0)

and if |λ| > 0 is small enough then J(g0,λ) is a Cantor of Jordan curves, namely homeomorphic
to the product of a Cantor set with a Jordan curve (see Figure 1.a). Recall that any Cantor
set is homeomorphic to the no middle third set on a line segment which contains uncountably
many points which are not endpoints of any removing open segment. Each of these points
corresponds to a buried Jordan curve in J(g0,λ).

In [PT00], the authors have provided another example by slightly modifying the map g−1,λ
for d∞ = 2 and d0 = 3 (that satisfies assumption (H0)) in a clever way:

g̃−1,λ : z 7→ 1

z
◦ (z2 − 1) ◦ 1

z
+
λ

z3
=

z2

1− z2
+
λ

z3
where λ ∈ C.

If |λ| > 0 is small enough then J(g̃−1,λ) has the same topological structure than J(g0,λ) except
that one fixed Julia component (which contains the boundary of the unbounded Fatou domain
and hence is not buried) is quasiconformally homeomorphic to the Julia set of z 7→ z2 − 1.
The uncountably many Julia components which are not eventually mapped under iteration
onto this fixed Julia component are buried Jordan curves in J(g̃−1,λ) (see Figure 1.b).

Examples of buried Jordan components which are not Jordan curves have appeared in
some works. For instance in [BDGR08] (see also [DM08] and [GMR13]), the authors have
studied the family gc,λ for d∞ = d0 > 3 (that satisfies assumption (H0)) and for a fixed
parameter c chosen so that for the polynomial z 7→ zd∞ + c the critical point 0 lies in a
cycle of period at least 2. In that case, if |λ| > 0 is small enough then J(gc,λ) still has
uncountably many Jordan curves as buried Jordan components but also uncountably many
points. The remaining Julia components are eventually mapped under iteration onto a fixed
Julia component (which coincides with the boundary of the unbounded Fatou domain and
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hence is not buried) quasiconformally homeomorphic to the Julia set of z 7→ zd∞ + c. Each of
these not buried Julia components has infinitely many “decorations” and every buried point
component is accumulated by a nested sequence of such decorations (see Figure 1.c).

Figure 1: a) J(g0,λ) for d∞ = 2, d0 = 3 and λ ≈ 10−9.
b) J(g̃−1,λ) for d∞ = 2, d0 = 3 and λ ≈ 10−9.
c) J(gc,λ) for d∞ = d0 = 3, c = −i and λ ≈ 10−9.

All the previous examples are rational maps of degree d∞ + d0 at least 5 according to
assumption (H0). The existence question of buried Julia components for rational maps of
degree less than 5 has been raised in [McM88]. In the last decade, a number of papers have
appeared that deal with subfamilies of gc,λ or some slightly perturbations of it. Some of them
present sophisticated Julia sets with buried Julia components, however the degree of these
examples is always at least equal to 5. Furthermore the buried Julia components of these
examples are points or Jordan curves.

The aim of this paper is to answer the question Curtis T. McMullen has raised by providing
a family of rational maps of degree 3 which does not come from the family gc,λ and whose
Julia set presents buried Julia components of several types: points, Jordan curves but also
Julia components which are neither points nor Jordan curves. One of our main result here is
the following.

Theorem 1. Consider the family of cubic rational maps given by

fλ : z 7→
(1− λ)

[
(1− 4λ+ 6λ2 − λ3)z − 2λ3

]
(z − 1)2

[
(1− λ− λ2)z − 2λ2(1− λ)

] where λ ∈ C.

If |λ| > 0 is small enough then J(fλ) contains buried Julia components of several types:
(point type) uncountably many points;
(circle type) uncountably many Jordan curves;

(complex type) countably many preimages of a fixed Julia component which is quasicon-
formally homeomorphic to the connected Julia set of f0 : z 7→ 1

(z−1)2 .

An example of such Julia set is depicted in Figure 2. J(fλ) is called a “Persian carpet”
because of similarities with sophistications from carpet-weaving art: the Julia set of f0 : z 7→

1
(z−1)2 appears as a watermark in the central motif of the carpet whose surface is covered by
an elaborate pattern of Cantor of Jordan curves, and there are some small Julia components
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Figure 2: a) A Persian carpet: J(fλ) for λ ≈ 10−3.
b) J(f0) which appears as a buried Julia component in J(fλ).
c) A magnification about a dust of the Persian carpet.

everywhere that looks like dust. These small dusts contain nested sequences of finite coverings
of the Persian carpet which accumulate buried point components.

The Persian carpet example is maximal among rational maps with buried Julia components
in the sense that buried Julia components can not occur for rational maps of degree less than
3. Indeed, by a theorem in [Mil00], the Julia set of any quadratic rational maps is either
connected or a Cantor set.

Furthermore, the Persian carpet example is maximal among geometrically finite rational
maps (namely rational maps such that every critical point in the Julia set is preperiodic, in
our case fλ is hyperbolic, namely it has no critical point in J(fλ) for |λ| > 0 small enough)
in the sense that every Julia component (not necessarily buried) of such a map is one of the
three types described in Theorem 1. That follows from two results. Firstly, by a theorem
in [McM88], every periodic Julia component of a rational map is either a point or quasicon-
formally homeomorphic to the connected Julia set of a rational map. Secondly, it has been
proved in [PT00] that every Julia component of a geometrically finite rational map which is
not eventually mapped under iteration onto a periodic Julia component is either a point or a
Jordan curve.

The underlying idea in the construction of the Persian carpet example is that the sophis-
ticated configuration on Ĉ of Julia components which are not points may be encoded by a
tree. Tree structures have appeared in various works on holomorphic dynamics (for instance
Hubbard trees in [DH84] to classify postcritically finite polynomial maps). The tree consid-
ered here is not embedded in Ĉ. It is seen as an abstract object which is very similar to, and
actually inspired by, the trees introduced by Mitsuhiro Shishikura in [Shi89] which describe
the configurations of Herman rings for rational maps.

However, the purpose of this paper is only to introduce a family of rational maps coming
from a particular tree which answers the question Curtis T. McMullen has raised. But not
to discuss about the general existence question of rational maps whose configuration of Julia
components is encoded by any given tree (that will be the purpose of future works) even if a
general construction may be suggested (especially statements and discussions in Section 2).

Organization of the paper. Section 2 deals with exchanging dynamics of postcritically
separating Julia components by weighted dynamical tree.
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In Section 2.1, we specify the idea mentioned above by showing that, under assumption
(H0), the exchanging dynamics of Julia components for the family g0,λ is encoded by a certain
weighted dynamical tree (HQ, w) (see Theorem 2).

The purpose of Section 2.2, is then to do the converse: starting from a particular dynamical
tree HP more sophisticated than HQ and a weight function w on its edges, Theorem 3 states
the existence of rational maps with disconnected Julia set whose exchanging dynamics of
postcritically separating Julia components is encoded by (HP , w) if (and, actually, only if)
two conditions (H1) and (H2) hold. Theorem 4 shows that the Julia sets of these rational
maps own buried Julia components of every expected type.

The main part of the proofs of Theorem 3 and Theorem 4, that is the construction by
quasiconformal surgery of the required rational maps, is detailed in Section 3.

In Section 4, some properties of the rational maps constructed in the previous section
are shown. The properties about exchanging dynamics (Section 4.1) conclude the proof of
Theorem 3 while the properties about topology of some Julia components (Section 4.2) give
the proof of Theorem 4.

Section 5 deals with a particular choice of the weight function w for which the two as-
sumptions (H1) and (H2) are satisfied and such that the rational maps in Theorem 3 and
Theorem 4 have degree 3. In this case, an explicit formula is provided that concludes the
proof of Theorem 1.

Finally, some technical results used in the construction of Section 3 are collected in Section
6 with proofs or references.

Acknowledgment. The author would like very much to thank Professor Tan Lei, the advisor
of his thesis, together with Professor Cui Guizhen for all their useful comments and fruitful
discussions on this work. Finally, the author thanks the referees for several helpful suggestions.

2 Encoding by weighted dynamical trees

For any rational map f : Ĉ → Ĉ, we denote by J (f) the set of Julia components and we
recall that f induces a topological dynamical system on J (f) endowed with the usual distance
between continua on Ĉ equipped with the spherical metric (notice that J (f) is closed for this
distance, that is not true in general for the Hausdorff distance). This topological dynamical
system is called the exchanging dynamics of Julia components.

We recall that the critical points of f are the points where f is not locally injective, and the
postcritical points of f are the points of the form fn(c) for some n > 1 and for some critical
point c. A Julia component J ∈ J (f) is said to be postcritically separating if J separates the
postcritical set of f , or equivalently if Ĉ−J has at least two connected components containing
at least one postcritical point of f each. We denote by Jcrit(f) the subset of postcritically
separating Julia components in J (f). Remark that Jcrit(f) is forward invariant, and thus f
induces a topological dynamical system on Jcrit(f).

2.1 McMullen’s example

Consider the cubic polynomial Q : z 7→ 3z2(3
2
− z). It has two simple critical points: 0 which

is fixed, and 1 which is mapped on 0 after two iterations.

02:1 99 1 2:1 // 3
2

1:1

��
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LetHQ be its Hubbard tree, namely the smallest closed connected infinite union of internal
rays which contains the postcritical set {0, 3

2
} (see [DH84]). In fact, HQ is the straight real

segment [0, 3
2
] or more precisely the union of two edges [0, 1]∪ [1, 3

2
] while the vertices are 0, 1

and 3
2
. Both edges of HQ are homeomorphically mapped by Q onto the whole tree (see Figure

3.b).

Figure 3: a) The Julia set of the polynomial Q.
b) The action of Q on the Hubbard tree HQ.
c) The action of g0,λ on the set of Julia components J (g0,λ).

Denote by J (HQ) the intersection set between the Hubbard tree HQ and the Julia set
J(Q). Notice that J (HQ) is disconnected (actually a Cantor set) and Q induced a dynamical
system on it since the Hubbard tree HQ and the Julia set J(Q) are both invariant.

Finally, let w be a weight function on the set of edges of HQ, say w([0, 1]) = d∞ and
w([1, 3

2
]) = d0 where d∞, and d0 are positive integer.

The result about the family g0,λ discussed in the introduction (see Section 1) may be
reformulated as follows.

Theorem 2. If the weighted dynamical tree (HQ, w) satisfies the following condition

1

d∞
+

1

d0
< 1 (H0)

then for every |λ| > 0 small enough, the exchanging dynamics of Julia component of g0,λ is
encoded by (HQ, w) in the following sense:

(i) every critical orbit accumulates the super-attracting fixed point ∞;

(ii) there exists a homeomorphism h : J (g0,λ) → J (HQ) such that the following diagram
commutes;

J (g0,λ)
g0,λ //

h
��

J (g0,λ)

h
��

J (HQ)
Q

// J (HQ)

(iii) for every Julia component J ∈ J (g0,λ), the restriction map g0,λ|J has degree w(e) where
e is the edge of HQ which contains h(J).

Notice that J (g0,λ) = Jcrit(g0,λ) for |λ| > 0 small enough since every Julia component is a
Jordan curve which separates the fixed critical point ∞ from some critical values close to 0.
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Proof. We only sketch the proof since the main part is done in [McM88]. Indeed it is shown
that there exists a large annulus A centered at 0 and containing J(g0,λ) whose preimage
consists of two disjoint annuli A∞, A0 both nested in A and such that the restriction maps
g0,λ|A∞ : A∞ → A and g0,λ|A0 : A0 → A are coverings of degree d∞ and d0, respectively.
Using combinatorial reasoning from holomorphic dynamics, it is a classical exercise to prove
that the set of connected components of J(g0,λ) = ∩n>0g

−n
0,λ(A) is homeomorphic to the space

of all sequences of two digits Σ2 = {0, 1}N (equipped with the product topology making it a
Cantor set) and the exchanging dynamics is topologically conjugated to a 2-to-1 shift map
σ : Σ2 → Σ2 defined by σ(s0, s1, s2, . . . ) = (s1, s2, s3, . . . ). The same holds for the dynamical
system induced by Q on J (HQ) since for ε > 0 small enough the real segment I = [ε, 3

2
− ε]

contains J (HQ) and its preimage consists of two disjoint real segment both included in I (one
in each of the two edges of HQ).

Heuristically speaking, we may topologically think the Riemann sphere Ĉ as a smooth
neighborhood’s boundary of the tree HQ embedded in the space R3. The two points on this
topological sphere which correspond to∞ and 0 should be closed to the corresponding vertices
ofHQ which are 0 and 3

2
, respectively. If the neighborhood becomes smaller and smaller, every

Jordan curves in J(g0,λ) is shrunk to a point in J(HQ) (see Figure 3.c).

2.2 Persian carpet example

Consider a quadratic polynomial of the form P : z 7→ z2 + c where the parameter c ∈ C
is chosen in order that the critical point 0 is periodic of period 4. There are exactly six
choices of such a parameter. Let us fix c to be that one with the largest imaginary part,
that is c ≈ −0.157 + 1.032i. The postcritical points are denoted by ck = P k(0) for every
k ∈ {0, 1, 2, 3}.

c11:1

��
c2

1:1
//

α 1:1
yy

c0

2:1

WW

c3

1:1
mm

Let HP be the Hubbard tree of P (see Figure 4.b). As one-dimensional simplicial complex,
HP may be described by a set of five vertices {c0, c1, c2, c3, α} where α is a fixed point of P
and the following four edges:

e0 = [α, c0]HP ; e1 = [α, c1]HP ; e2 = [α, c2]HP ; e3=[c0, c3]HP .

P homeomorphically acts on the edges as follows.
P (e0) = e1
P (e1) = e2
P (e2) = e0 ∪ e3
P (e3) = e0 ∪ e1

Denote by J (HP ) the intersection set between the Hubbard tree HP and the Julia set J(P ).
Notice that J (HP ) is disconnected (actually a Cantor set) and P induced a dynamical system
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on it. Moreover the fixed branching point α belongs to J (HP ) but not to the boundary of
any connected component of HP − J (HP ). Finally, let w be a weight function on the set of
edges of HP , say w(ek) = dk where dk is a positive integer for every k ∈ {0, 1, 2, 3}.

Figure 4: a) The Julia set of the polynomial P .
b) The Hubbard tree HP .
c) The action of P on a straightened copy of HP .

Definition 1. The transition matrix of the weighted dynamical tree (HP , w) is the 4-by-4
matrix M = (mi,j)i,j∈{0,1,2,3} whose entries are defined as follows.

∀i, j ∈ {0, 1, 2, 3}, mi,j =


1

w(ei)
if ej ⊂ P (ei)

0 otherwise

Since M is a non-negative matrix, it follows from Perron-Frobenius Theorem that the eigen-
value with the largest modulus is real and non-negative. Let us call λ(HP , w) this leading
eigenvalue. The weighted dynamical tree (HP , w) is said to be unobstructed if λ(HP , w) < 1.

Let us give some remarks about this definition.

1. This definition is strongly related to obstructions which occur in Thurston characteri-
zation of postcritically finite rational maps and all the theory behind (see [DH93])

2. When (HP , w) is unobstructed, Perron-Frobenius Theorem and continuity of the spec-
tral radius ensure the existence of a vector V ∈ R4 with positive entries such that
MV < V . This remark will be useful later.

3. Actually the transition matrix of (HP , w) is given by

M =


0 1

d0
0 0

0 0 1
d1

0
1
d2

0 0 1
d2

1
d3

1
d3

0 0


and an easy computation shows that λ(HP , w) is the largest root of

X4 −
(

1

d0d1d2
+

1

d1d2d3

)
X − 1

d0d1d2d3
.
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Notice that if λ(HP , w) > 1 then λ(HP , w) 6 1
d0d1d2

+ 1
d1d2d3

+ 1
d0d1d2d3

, thus (HP , w) is
unobstructed as soon as at least three of weights d0, d1, d2, and d3 are > 2. Conversely,
if (HP , w) is unobstructed then one can show by exhaustion that at least two of weights
d0, d1, d2, and d3 are > 2.

4. For the McMullen’s example, the transition matrix of (HQ, w) may be defined as well
and we get

M =

(
1
d∞

1
d∞

1
d0

1
d0

)
.

An easy computation gives that λ(HQ, w) = 1
d∞

+ 1
d0
. Consequently the weighted

dynamical tree (HQ, w) is unobstructed if and only if the assumption (H0) holds.

The following result is analogous to Theorem 2.

Theorem 3. If the weighted dynamical tree (HP , w) satisfies the two following conditions

d̂ =
1

2
(d0 + d1 + d2 − 1) is an integer > 2 and max{d0, d1, d2} 6 d̂ (H1)

(HP , w) is unobstructed (H2)

then there exists a rational map f of degree d̂ + d3 such that the exchanging dynamics of
postcritically separating Julia components of f is encoded by (HP , w) in the following sense:

(i) every critical orbit accumulates a super-attracting cycle {z0, z1, z2, z3} of period 4;

(ii) there exists a homeomorphism h : Jcrit(f) → J (HP ) such that the following diagram
commutes;

Jcrit(f)
f //

h
��

Jcrit(f)

h
��

J (HP )
P

// J (HP )

(iii) for every Julia component J ∈ Jcrit(f) such that h(J) is not eventually mapped under
iteration to the fixed branching point α, the restriction map f |J has degree w(ek) = dk
where ek is the edge of HP which contains h(J).

The same heuristic as for Theorem 2 still holds: we may topologically think the Riemann
sphere Ĉ as a smooth neighborhood’s boundary of the treeHP embedded in the space R3. The
action of f on this topological sphere follows that one of the dynamical tree HP . The points
on this topological sphere which correspond to the points in the super-attracting periodic
cycle {z0, z1, z2, z3} should be closed to the corresponding vertices {c0, c1, c2, c3} of HP , and
every Julia component in Jcrit(f) closely surrounds a corresponding point in J (HP ).

Theorem 4. Under assumptions (H1) and (H2) there exists a rational map f satisfying
Theorem 3 and such that J(f) contains buried Julia components of several types:

(point type) uncountably many points;
(circle type) uncountably many Jordan curves;

(complex type) countably many preimages of a fixed Julia component lying over the fixed
branching point α, say Jα = h−1(α) ∈ J (f), which is quasiconformally
homeomorphic to the connected Julia set of a rational map f̂ .

Moreover f̂ has degree d̂ and has only one critical orbit which is a super-attracting cycle
{ẑ0, ẑ1, ẑ2} of period 3 such that the local degree of f̂ at ẑk is dk for every k ∈ {0, 1, 2}.
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Let us give some comments about these results.

1. The rational map f̂ corresponds to the dynamics of f on the fixed Julia component Jα
lying over the fixed branching point α. More precisely, there is a quasiconformal map
ϕ from a neighborhood of J(f̂) onto a neighborhood of Jα such that ϕ ◦ f̂ = f ◦ ϕ (see
the construction of f in Section 3).

2. The rational map f̂ may also be seen as encoded by a weighted dynamical tree. Consider
the quadratic polynomial R : z 7→ z2 + ĉ where ĉ ∈ C is the parameter with the
largest imaginary part such that the critical point 0 is periodic of period 3, that is
ĉ ≈ −0.123 + 0.745i (J(R) is known as the Douady’s rabbit). The Hubbard tree HR of
R is described by a set of four vertices {ĉ0, ĉ1, ĉ2, α̂} where ĉk = Rk(0) and α̂ is a fixed
point of R, and three edges of the form êk = [α̂, ĉk]HR for every k ∈ {0, 1, 2}. Consider
the weight function w defined by w(êk) = dk for every k ∈ {0, 1, 2}. Then the weighted
dynamical tree (HR, w) encodes the action of f̂ in the same setting as in Theorem 2
and Theorem 3. Notice that the intersection set between HR and J(R) is reduced to
J (HR) = {α̂}, that corresponds to the unique Julia component in J (f̂) = Jcrit(f̂) =

{J(f̂)}. Finally, remark that the weighted dynamical tree (HR, w) is unobstructed as
soon as assumption (H1) holds (actually λ(HR, w) = 1

d0d1d2
).

3. The rational map f̂ is unique up to conjugation by a Möbius map or equivalently it is
unique as soon as its critical orbit {ẑ0, ẑ1, ẑ2} is fixed in Ĉ (see Lemma 1). However,
the rational map f is not unique since the critical points which do not belong to the
super-attracting periodic cycle {z0, z1, z2, z3} (but whose orbits accumulate it) may be
perturbed in some neighborhoods without changing the exchanging dynamics and the
topology of Julia components.

4. The rational map f is not postcritically finite since J(f) is disconnected (but it is
hyperbolic from point (i) in Theorem 3). In particular Thurston characterization of
postcritically finite rational maps (see [DH93]) can not be used to prove the existence
of f . However one could use the works of Tan Lei and Cui Guizhen about sub- hyper-
bolic semi-rational maps in [CT11] but this paper presents a more explicit and more
constructive method by quasiconformal surgery (see Section 3).

5. The assumption (H1) is necessary. Indeed it is the smallest requirement such that there
exists a topological model for f̂ , that is a branched covering combinatorially equivalent
to f̂ (see Lemma 16 and proof of Lemma 1).

6. The assumption (H2) is necessary. Otherwise we can find a Thurston obstruction, that
is to say a multicurve Γ whose transition matrix is equal to M with leading eigenvalue
λ(Γ) = λ(HP , w) > 1. According to a result of Curtis T. McMullen in [McM94] it
follows that λ(Γ) = 1 and at least one curve in Γ is contained in an union of Fatou
domains where f is biholomorphically conjugated to a rotation. That is a contradiction
since every critical orbit of f accumulates a super-attracting periodic cycle.

3 Construction
The aim of this section is to construct by quasiconformal surgery (we refer readers to [BF13]
for a comprehensive treatment on this powerful method) a rational map f which sastifies
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Theorem 3 and Theorem 4. The strategy is to start from a rational map f̂ whose Julia set
corresponds to the branching point α in HP (see Theorem 4) and then to modify this map in
order to create a folding corresponding to the critical point c0.

3.1 The branching map f̂

The first step of the construction is to prove the existence of the rational map f̂ which appears
in Theorem 4. This is done by Lemma 1 below.

Lemma 1. If assumption (H1) holds then there exists a rational map f̂ : Ĉ→ Ĉ of degree d̂
such that:

(i) f̂ has only one critical orbit which is a super-attracting cycle {ẑ0, ẑ1, ẑ2} of period 3 such
that the local degree of f̂ at ẑk is dk for every k ∈ {0, 1, 2};

(ii) J(f̂) is connected and the Fatou set Ĉ− J(f̂) has infinitely many connected components
which are simply connected.

Moreover f̂ is unique up to conjugation by a Möbius map.

There are many ways to prove the existence of f̂ (for instance by “blowing up” the edges of
some triangle invariant by a Möbius map, see [PT98]). Here we give a simple proof provided
a particular solution of the Hurwitz problem (see Section 6).

Proof. Up to conjugation by a Möbius map, we may fix three distinct points ẑ0, ẑ1, and ẑ2
in Ĉ. Remark that if at least one of integers d0, d1, and d2 is equal to 1, says d0 = 1, then
assumption (H1) leads to d1 = d2 = d̂ and the rational map f̂ = ϕ ◦ (z 7→ zd̂) ◦ ϕ̃−1 where ϕ
and ϕ̃ are two Möbius maps such that

ϕ̃(1) = ẑ0, ϕ̃(0) = ẑ1, ϕ̃(∞) = ẑ2,
and ϕ(1) = ẑ1, ϕ(0) = ẑ2, ϕ(∞) = ẑ2,

satisfies (i). Consequently we may assume that d0, d1, and d2 are > 2.
If follows that we may apply Lemma 16 since assumption (H1) easily implies condition

(H1’) for the abstract branch data coming from d = d̂, and di,1 = di−1 for every i ∈ {1, 2, 3}.
We get a degree d̂ branched covering H : S2 → S2 and three distinct points x1,1, x2,1, and
x3,1 in S2 such that the local degree of H at xi,1 is di−1 for every i ∈ {1, 2, 3} and H has no
more critical points than x1,1, x2,1, and x3,1. Let ϕ : S2 → Ĉ be any homeomorphism such
that ϕ(H(xi,1)) = ẑi for every i ∈ {1, 2, 3}. Remark that the map ϕ ◦H : S2 → Ĉ induces a
complex structure on S2. In other words, the uniformization theorem gives a homeomorphism
ϕ̃ : S2 → Ĉ such that the map f̂ = ϕ ◦ H ◦ ϕ̃−1 is holomorphic on Ĉ and thus a rational
map of degree d̂. Moreover, up to postcomposition with a Möbius map, we may assume that
ϕ̃(xi,1) = ẑi−1 for every i ∈ {1, 2, 3} so that f̂ satisfies (i).

Now remark that for every k ∈ {0, 1, 2}, the connected component containing ẑk of the
super-attracting basin of f̂ is simply connected since it contains at most one critical point.
Moreover, any other Fatou component is eventually mapped by homeomorphisms onto one of
these simply connected components. It follows that f̂ satisfies (ii).

Finally let ĝ be another rational map of degree d̂ which satisfies (i) and (ii) for the same
super-attracting periodic cycle {ẑ0, ẑ1, ẑ2}. Then z 7→ f̂(z)− ĝ(z) is a rational map of degree
at most 2d̂ for which 0 has at least d0 + d1 + d2 = 2d̂+ 1 preimages counted with multiplicity
(every ẑk is a preimage of 0 with multiplicity dk). Consequently this map is identically equal
to 0, that is f̂ = ĝ.
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Notice that the previous proof strongly uses the fact that the postcritical set contains only
three points. Indeed if the postcritical set contains more than three points, there is still an
uniformization map ϕ̃ for S2 equipped with the complex structure coming from ϕ ◦ H, but
that may not be possible to postcompose ϕ̃ with a Möbius map so that f̂ satisfies (i). In fact
we would also need to check that the branched covering H has no Thurston obstructions (see
[DH93]).

3.2 Cutting along a system of equipotentials

Starting with the map f̂ coming from Lemma 1, we need to divide Ĉ into several pieces on
which the map f (or more precisely a quasiregular map F ) will be piecewisely defined. This
partition comes from a certain system of equipotentials of f̂ defined in Lemma 2 below.

For every k ∈ {0, 1, 2}, denote by B(ẑk) the connected component containing ẑk of the
super-attracting basin of f̂ . Recall that each B(ẑk) is a marked hyperbolic disk. More
precisely, Böttcher’s Theorem provides Riemann mappings φk : D → B(ẑk) (namely biholo-
morphic maps from the open unit disk D onto B(ẑk) such that φk(0) = ẑk and the following
diagram commutes.

B(ẑ0)

f̂
��

D
φ0oo

z 7→ zd0
��

B(ẑ1)

f̂
��

D
φ1oo

z 7→ zd1
��

B(ẑ2)

f̂
��

D
φ2oo

z 7→ zd2
��

B(ẑ0) D
φ0oo

Recall that an equipotential β in any B(ẑk) is the image by φk of an euclidean circle in D
centered at 0. The radius of this circle is called the level of β and is denoted by Lk(β) ∈]0, 1[,
in order that β = {z ∈ B(ẑk) / |φ−1k (z)| = Lk(β)}.

Recall that any pair of disjoint continua β, β′ in Ĉ uniquely defines an open annulus in
Ĉ denoted by A(β, β′). If β, β′ contain at least two points each, A(β, β′) is biholomorphic
to a round annulus of the form Ar = {z ∈ C / r < |z| < 1} where r ∈]0, 1[ only depends on
A(β, β′). The modulus of A(β, β′) is defined to be mod(A(β, β′)) = 1

2π
log(1

r
). In particular if

β, β′ are two equipotentials in the same domain B(ẑk) of levels Lk(β) > Lk(β
′) then

mod(A(β, β′)) =
1

2π
log

(
Lk(β)

Lk(β′)

)
.

Finally for every k ∈ {0, 1, 2}, denote by αk the compact connected subset of J(f̂) which
corresponds to the boundary of B(ẑk).

Lemma 2. If assumption (H2) holds then there exist three equipotentials β0 in B(ẑ0), β1 in
B(ẑ1), and β2 in B(ẑ2), together with two equipotentials β+

3 and β−3 in B(ẑ0) such that

L0(β0) > L0(β
+
3 ) > L0(β

−
3 )

13



and the following linear system of inequalities holds.

1

d0
mod(A(α1, β1)) < mod(A(α0, β0))

1

d1
mod(A(α2, β2)) < mod(A(α1, β1))

1

d2
mod(A(α0, β0)) +

1

d2
mod(A(β+

3 , β
−
3 )) < mod(A(α2, β2))

1

d3
mod(A(β1, β0)) < mod(A(β+

3 , β
−
3 ))

and mod(A(β0, β
+
3 )) > 1

(1)

Recall that the modulus is a conformal invariant, or more precisely if there is a holomorphic
covering of degree d from an open annulus A onto another one A′ then mod(A) = 1

d
mod(A′).

Hence the first three inequalities in linear system (1) implies that the preimages under f̂ of
these equipotentials are arranged as shown in Figure 5. The fourth inequality will allow to
realize the preimage of the branching point α in HP (see Lemma 4) while the last inequality
ensures sufficient space to realize the folding corresponding to the critical point c0 (see Lemma
3).

Figure 5: The pattern of the equipotentials (and their preimages) coming from Lemma 2
displayed on the Riemann sphere which is topologically distorted to emphasize the
three domains B(ẑ0), B(ẑ1), and B(ẑ2) (compare with Figure 4.c).

The key point of the proof needs an inverse Grötzch’s inequality due to Cui Guizhen and
Tan Lei (see Section 6).

Proof. Let C > 0 be the constant coming from Lemma 17 for the marked hyperbolic disks
B(ẑ0), B(ẑ1). Thus, for every pair of equipotentials β0 in B(ẑ0) and β1 in B(ẑ1), we have

1

d3
mod(A(β1, β0)) 6

1

d3
(mod(A(α0, β0)) + mod(A(α1, β1)) + C).

14



Now consider the following linear system of inequations with real unknowns x0, x1, x2, x3.

1

d0
x1 < x0

1

d1
x2 < x1

1

d2
x0 +

1

d2
x3 < x2

1

d3
(x0 + x1 + C) < x3

(2)

Using the transition matrix M coming from Definition 1, this system is equivalent to

MX +


0
0
0
C
d3

 < X where X =


x0
x1
x2
x3

 .

Recall that assumption (H2) states that the leading eigenvalue λ(HP , w) of M is less than 1.
It follows from Perron-Frobenius Theorem and continuity of spectral radius the existence of a
vector V ∈ R4 with positive entries such that MV < V . Now taking µ > 0 large enough (for
instance µ = ( C

d3
+ 1)(v3− 1

d3
v0− 1

d3
v1)
−1), the vector X = µV with positive entries solves the

linear system of inequations (2).
The equipotentials β0, β1, β2 are uniquely defined by

1

2π
log

(
1

Lk(βk)

)
= mod(A(αk, βk)) = xk for every k ∈ {0, 1, 2}.

For β+
3 , choose an arbitrary equipotential in B(ẑ0) such that

L0(β0) > L0(β
+
3 ) and

1

2π
log

(
L0(β0)

L0(β
+
3 )

)
= mod(A(β0, β

+
3 )) > 1.

Then β−3 is uniquely defined by

L0(β
+
3 ) > L0(β

−
3 ) and

1

2π
log

(
L0(β

+
3 )

L0(β
−
3 )

)
= mod(A(β+

3 , β
−
3 )) = x3.

It follows from construction that β0, β1, β2, β+
3 , and β−3 satisfy all the requirements of

Lemma 2, the fourth inequality in linear system (1) coming from the last inequality in linear
system (2) and Lemma 17.

It turns out in the proof above that the lower bound of the last inequality in linear system
(1) may be changed for any positive constant (which depends only on the integers d0, d1,
d2, and d3). As we will see later in Lemma 3, the lower bound 1 ensures sufficient space to
make the surgery in A(β0, β

+
3 ). However, the author guesses that the last inequality in linear

system (1) is not necessary (see discussion after the proof of Lemma 18).
The system of equipotentials coming from Lemma 2 will be used to divide Ĉ into several

pieces on which a quasiregular map F will be piecewisely defined. This map F should be
carefully defined in such a way that its dynamics is encoded by the weighted dynamical tree
(HP , w) (see Theorem 3).

For instance, the first step of the construction which corresponds to the dynamics on
e1 ∪ e2 for HP is the following. Denote by β0,1 the preimage of β1 in B(ẑ0) (see Figure 5).
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From the first inequality in linear system (1), β0,1 is an equipotential of level L0(β0,1) >
L0(β0). Denote by D(β0,1) the open disk bounded by β0,1 and containing {ẑ1, ẑ2} (and hence
J(f̂)∪B(ẑ1)∪B(ẑ2) as well). Then F is defined to be the rational map f̂ on D(β0,1). Remark
that F |D(β0,1) continuously extends to β0,1 by a degree d0 covering denoted by F |β0,1 : β0,1 → β1.

3.3 Folding with an annulus-disk surgery

The aim of this part of the construction is to realize the folding corresponding to the critical
point c0 inHP . More precisely F should holomorphically maps a small annulus (corresponding
to a neighborhood of c0 in HP ) onto a disk (corresponding to a neighborhood of c1 in HP )
with respect to the degrees d0, d3.

Let γ1 be an arbitrary equipotential in B(ẑ1) such that L1(γ1) < L1(β1). Denote by D(γ1)
the open disk bounded by γ1 and containing ẑ1. In order to follow more easily the construction,
we will slightly improve the notation. So let γ0,1 be the equipotential β0, keeping in mind that
γ0,1 will be mapped onto γ1 by a degree d0 covering. Notice that the first inequality in linear
system (1) of Lemma 2 implies L0(β0,1) > L0(γ0,1). Similarly let β3,1 be the equipotential β+

3 ,
keeping in mind that β3,1 will be mapped onto β1 by a degree d3 covering.

Lemma 3. There exist an equipotential γ3,1 in B(ẑ0) and a holomorphic branched covering
F |A(γ0,1,γ3,1) : A(γ0,1, γ3,1)→ D(γ1) such that:

(i) L0(β0,1) > L0(γ0,1) > L0(γ3,1) > L0(β3,1);

(ii) F |A(γ0,1,γ3,1) has degree d0 + d3 and has d0 + d3 critical points counted with multiplicity,
which one of them, denoted by c, satisfies F |A(γ0,1,γ3,1)(c) = ẑ1;

(iii) F |A(γ0,1,γ3,1) continuously extends to γ0,1 ∪ γ3,1 by a degree d0 covering F |γ0,1 : γ0,1 → γ1
and a degree d3 covering F |γ3,1 : γ3,1 → γ1.

Proof. Let G : A(γ, γ′)→ D be a holomorphic branched covering coming from Lemma 18 for
the integers n = d0 and n′ = d3. Define the equipotential γ3,1 by

L0(γ0,1) > L0(γ3,1) and
1

2π
log

(
L0(γ0,1)

L0(γ3,1)

)
= mod(A(γ0,1, γ3,1)) = mod(A(γ, γ′)).

Since mod(A(γ0,1, β3,1)) = mod(A(β0, β
+
3 )) > 1 (from the last inequality in linear system

(1) of Lemma 2) and mod(A(γ0,1, γ3,1)) = mod(A(γ, γ′)) 6 1 (from the point (iii) in Lemma
18), it follows that L0(γ3,1) > L0(β3,1) and the point (i) holds.

Now let ψ be any biholomorphic map from A(γ0,1, γ3,1) onto A(γ, γ′). The existence of such
a biholomorphic map is ensured by the fact that these two open annuli have same modulus.
Since A(γ0,1, γ3,1) and A(γ, γ′) are bounded by quasicircles, ψ may be continuously extended
to γ0,1 ∪ γ3,1 by two homeomorphisms.

Let c be the preimage under ψ of any critical point of G and let φ : D → D(γ1) be
any Riemann mapping of D(γ1) such that φ(G(ψ(c))) = ẑ1. Since D(γ1) is bounded by an
equipotential, φ may be continuously extended to ∂D by a homeomorphism.

Then F |A(γ0,1,γ3,1) = φ ◦G ◦ψ is holomorphic on A(γ0,1, γ3,1) and satisfies (ii), and (iii) by
construction.

Figure 6 depicts the map F |A(γ0,1,γ3,1) coming from Lemma 3.
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Figure 6: The map F |A(γ0,1,γ3,1) coming from Lemma 3 displayed on the Riemann sphere which
is topologically distorted to emphasize the three domains B(ẑ0), B(ẑ1), and B(ẑ2)
(compare with Figure 4.c).

3.4 Preimage of the branching part

According to the last two sections, the map F is defined up to there on the union of the open
disk D(β0,1) containing {ẑ1, ẑ2} with the open annulus A(γ0,1, γ3,1) containing c. Moreover F
maps c to ẑ1, ẑ1 to ẑ2 and ẑ2 to ẑ0. Now we need to define F near ẑ0 by sending ẑ0 to c in
order to realize a cycle of period 4 as required in Theorem 3. This should be done carefully
so that the quasiconformal surgery may be concluded.

The first problem is that some preimage of J(f̂) (or more precisely of the open annulus
A(β1, β0) containing J(f̂)) must appear in B(ẑ0) (compare with Figure 4.c where the edge
e3 = [c0, c3]HP contains a preimage of the branching point α). This is done in Lemma 4 below
which essentially uses the fourth inequality in linear system (1) of Lemma 2.

Lemma 4. There exist an equipotential β3,0 in B(ẑ0) and a holomorphic covering F |A(β3,1,β3,0) :
A(β3,1, β3,0)→ A(β1, β0) such that:

(i) L0(β3,1) > L0(β3,0) > L0(β
−
3 );

(ii) F |A(β3,1,β3,0) has degree d3 and has no critical point;

(iii) F |A(β3,1,β3,0) continuously extends to β3,1∪β3,0 by two degree d3 coverings F |β3,1 : β3,1 → β1
and F |β3,0 : β3,0 → β0.

Proof. Define the equipotential β3,0 by

L0(β3,1) > L0(β3,0) and
1

2π
log

(
L0(β3,1)

L0(β3,0)

)
= mod(A(β3,1, β3,0)) =

1

d3
mod(A(β1, β0)).

Since mod(A(β3,1, β3,0)) = 1
d3

mod(A(β1, β0)) < mod(A(β+
3 , β

−
3 )) = mod(A(β3,1, β

−
3 ))

(from the fourth inequality in linear system (1) of Lemma 2), it follows that L0(β3,0) > L0(β
−
3 )

and the point (i) holds.
Now let ψ be any biholomorphic map from A(β3,1, β3,0) onto a round annulus of the form

Ar = {z ∈ C / r < |z| < 1} where r is defined by

1

2π
log

(
1

r

)
= mod(Ar) = mod(A(β3,1, β3,0)).
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Since A(β3,1, β3,0) is bounded by equipotentials, ψ may be continuously extended to β3,1∪β3,0
by two homeomorphisms which send β3,1 onto {z ∈ C / |z| = 1} and β3,0 onto {z ∈ C / |z| = r}.

Similarly, let Ψ be any biholomorphic map from the round annulus Ard3 onto A(β1, β0).
The existence of such a biholomorphic map is ensured by the fact that

mod(Ard3 ) =
1

2π
log

(
1

rd3

)
=
d3
2π

log

(
1

r

)
= d3 mod(A(β3,1, β3,0)) = mod(A(β1, β0)).

Since A(β1, β0) is bounded by equipotentials, Ψ may be continuously extended to ∂Ard3 by
two homeomorphisms which send {z ∈ C / |z| = 1} onto β1 and {z ∈ C / |z| = rd3} onto β0.

Then F |A(β3,1,β3,0) = Ψ◦ (z 7→ zd3)◦ψ is holomorphic on A(β3,1, β3,0) and satisfies (ii), and
(iii) by construction.

Figure 7 depicts the map F |A(β3,1,β3,0) coming from Lemma 4.

Figure 7: The map F |A(β3,1,β3,0) coming from Lemma 4 displayed on the Riemann sphere which
is topologically distorted to emphasize the three domains B(ẑ0), B(ẑ1), and B(ẑ2)
(compare with Figure 4.c).

3.5 Achievement of the super-attracting cycle of period 4

Now we achieve the definition of F near ẑ0. This is done in two parts. Firstly Lemma 5
realizes a preimage of a neighborhood of ẑ0 in B(ẑ0). Then Lemma 6 defines F near ẑ0 by
sending a neighborhood of ẑ0 onto a neighborhood of c (mapping ẑ0 to c).

Let γ0 be an arbitrary equipotential in B(ẑ0) such that L0(β0) = L0(γ0,1) > L0(γ0) >
L0(γ3,1) and A(γ0, γ3,1) contains the critical point c.

Lemma 5. There exist two equipotentials γ3,0 and δ+3,c in B(ẑ0), a quasicircle δ+c in A(γ0, γ3,1)
which separates c from γ0 ∪ γ3,1, and a holomorphic covering F |A(γ3,0,δ+3,c) : A(γ3,0, δ

+
3,c) →

A(γ0, δ
+
c ) such that:

(i) L0(β3,0) > L0(γ3,0) > L0(δ
+
3,c) > L0(β

−
3 );

(ii) F |A(γ3,0,δ+3,c) has degree d3 and has no critical point;

(iii) F |A(γ3,0,δ+3,c) continuously extends to γ3,0∪δ+3,c by two degree d3 coverings F |γ3,0 : γ3,0 → γ0

and F |δ+3,c : δ+3,c → δ+c .
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Proof. Applying Lemma 19, we get a quasicircle δ+c in A(γ0, γ3,1) which separates c from
γ0 ∪ γ3,1 and such that

1

d3
mod(A(γ0, δ

+
c )) < mod(A(β3,0, β

−
3 )).

Therefore we can find two equipotentials γ3,0 and δ+3,c in B(ẑ0) so that

L0(β3,0) > L0(γ3,0) > L0(δ
+
3,c) > L0(β

−
3 )

and
1

2π
log

(
L0(γ3,0)

L0(δ
+
3,c)

)
= mod(A(γ3,0, δ

+
3,c)) =

1

d3
mod(A(γ0, δ

+
c )).

The point (i) holds by definition. For the two other points, the proof may be achieved as
that one of Lemma 4.

Figure 8 depicts the equipotentials involved in Lemma 5 and the map F |A(γ3,0,δ+3,c).

Figure 8: The maps F |A(γ3,0,δ+3,c) and F |D(δ−3,c)
coming from Lemma 5 and Lemma 6 displayed

on the Riemann sphere which is topologically distorted to emphasize the three
domains B(ẑ0), B(ẑ1), and B(ẑ2) (compare with Figure 4.c).

It remains to define F near ẑ0. Let δ−c be an arbitrary quasicircle which separates c from
δ+c . We slightly improve the notation by denoting δ−3,c the equipotential β−3 keeping in mind
that δ−3,c will be mapped onto δ−c by a degree d3 covering. Finally, denote by D(δ−3,c) the open
disk bounded by δ−3,c and containing ẑ0, and by D(δ−c ) the open disk bounded by δ−c and
containing c.

Lemma 6. There exists a holomorphic branched covering F |D(δ−3,c)
: D(δ−3,c) → D(δ−c ) such

that:

(i) F |D(δ−3,c)
has degree d3 and has only one critical point which is ẑ0 with F |D(δ−3,c)

(ẑ0) = c;

(ii) F |D(δ−3,c)
continuously extends to δ−3,c by a degree d3 covering F |δ−3,c : δ−3,c → δ−c .

Proof. Let φ : D → D(δ−3,c) be any Riemann mapping of D(δ−3,c) such that φ(0) = ẑ0, and
let Φ : D → D(δ−c ) be any Riemann mapping of D(δ−c ) such that Φ(0) = c. Since D(δ−3,c)
and D(δ−c ) are bounded by quasicircles, φ and Φ may be continuously extended to ∂D by
homeomorphisms.

Then F |D(δ−3,c)
= Φ ◦ (z 7→ zd3) ◦ φ−1 gives the result.

Figure 8 depicts the map F |D(δ−3,c)
coming from Lemma 6.
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3.6 Uniformization

At first we sum up in the following table the definition of F up to there.

domains images cont. extensions
on boundaries

critical points
with multiplicity critical values

D(β0,1) Ĉ β0,1
d0:1−−−→ β1

ẑ1 with mult. d1 − 1
ẑ2 with mult. d2 − 1

F (ẑ1) = ẑ2
F (ẑ2) = ẑ0

A(γ0,1, γ3,1) D(γ1)
γ0,1

d0:1−−−→ γ1

γ3,1
d3:1−−−→ γ1

c ∈ {d0 + d3 crit. pts
counted with mult.}

F (c) = ẑ1
and others

A(β3,1, β3,0) A(β1, β0)
β3,1

d3:1−−−→ γ1

β3,0
d3:1−−−→ β0

∅ ∅

A(γ3,0, δ
+
3,c) A(γ0, δ

+
c )

γ3,0
d3:1−−−→ γ0

δ+3,c
d3:1−−−→ δ+c

∅ ∅

D(δ−3,c) D(δ−c ) δ−3,c
d3:1−−−→ δ−c ẑ0 with mult. d3 − 1 F (ẑ0) = c

So F is holomorphically defined on H = D(β0,1)∪A(γ0,1, γ3,1)∪A(β3,1, β3,0)∪A(γ3,0, δ
+
3,c)∪

D(δ−3,c) with continuous extension on the boundary. It remains to define F on the complement
Q = Ĉ−H = A(β0,1, γ0,1)∪A(γ3,1, β3,1)∪A(β3,0, γ3,0)∪A(δ+3,c, δ

−
3,c). This is done in the following

lemma.

Lemma 7. The map F |H : H → Ĉ extends to a quasiregular map F : Ĉ → Ĉ by quasicon-
formal coverings defined on each connected component of Q = Ĉ−H.

Moreover there exists an open subset E ⊂ H such that F (E) ⊂ E and F 2(Q) ⊂ E.

In particular, notice that the quasiregular map F : Ĉ → Ĉ has no more critical points
than those coming from the holomorphic restriction F |H : H → Ĉ.

Proof. Remark that every connected component of Q is an open annulus whose boundary
is the disjoint union of two quasicircles where F realizes two coverings of same degree (and
same orientation). By interpolation, F may be continuously extended to each connected
component of Q by a covering of degree corresponding to that one on the boundary. Since
all the connected components of the boundary of Q, together with their images by F , are
quasicircles, each interpolation may be carefully done in such a way that the resulting map is
actually quasiconformal on the Riemann sphere. In short, F quasiregularly extends to Q by

• a degree d0 quasiconformal covering F |A(β0,1,γ0,1) : A(β0,1, γ0,1)→ A(β1, γ1);

• a degree d3 quasiconformal covering F |A(γ3,1,β3,1) : A(γ3,1, β3,1)→ A(γ1, β1);

• a degree d3 quasiconformal covering F |A(β3,0,γ3,0) : A(β3,0, γ3,0)→ A(β0, γ0);

• a degree d3 quasiconformal covering F |A(δ+3,c,δ−3,c) : A(δ+3,c, δ
−
3,c)→ A(δ+c , δ

−
c ).

In particular, we have F (Q) = A(β1, γ1) ∪ A(β0, γ0) ∪ A(δ+c , δ
−
c ) (see figure 9 to follow the

continuation of the proof).
Now denote by β1,2 the preimage of β2 in B(ẑ1) under F (thus under f̂) and similarly

by β−2,3 the preimage of β−3 in B(ẑ2) (see Figure 5). Moreover denote by D(β1,2) the open
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disk bounded by β1,2 and containing ẑ1, and by D(β−2,3) the open disk bounded by β−2,3 and
containing ẑ2. Finally, let E be the union D(β1,2) ∪D(β−2,3) ∪D(δ−3,c) ∪ A(γ0,1, γ3,1).

At first remark that E is an open subset of H = D(β0,1) ∪ A(γ0,1, γ3,1) ∪ A(β3,1, β3,0) ∪
A(γ3,0, δ

+
3,c) ∪D(δ−3,c). Indeed we have D(β1,2) ∪D(β−2,3) ⊂ D(β0,1) from definition of D(β0,1).

Moreover, it follows from definition of F on H that F (E) = D(β2)∪D(β−3 )∪D(δ−c )∪D(γ1)
where D(β2) denotes the open disk bounded by β2 and containing ẑ2, and D(β−3 ) = D(δ−3,c)
is the open disk bounded by β−3 = δ−3,c and containing ẑ0.

Furthermore, according to the whole construction, we have

• from Lemma 2 and definition of γ1: A(β1, γ1) ∪D(γ1) ⊂ D(β1,2) and D(β2) ⊂ D(β−2,3);

• from definition of γ0 and recalling β0 = γ0,1: A(β0, γ0) ⊂ A(γ0,1, γ3,1);

• from definitions of δ−c , δ+c and γ0: A(δ+c , δ
−
c ) ∪D(δ−c ) ⊂ A(γ0, γ3,1) ⊂ A(γ0,1, γ3,1).

Putting everything together gives the following diagram in which the arrows F−→ stand for
images under F , ⊂−→ stand for inclusions, ⊂⊂−→ stand for compact inclusions (namely A ⊂⊂−→ B
if and only if A ⊂ B) and =−→ stands for equality.

Q

F

��

=A(β0,1, γ0,1)

F

��

∪ A(γ3,1, β3,1)

F

zz

∪ A(β3,0, γ3,0)

F

zz

∪ A(δ+3,c, δ
−
3,c)

F

zz
F (Q)

⊂

��

= A(β1, γ1)

⊂⊂
��

∪ A(β0, γ0)

⊂

**

∪ A(δ+c , δ
−
c )

⊂⊂

$$
E

F

��

= D(β1,2)

F

$$

∪ D(β−2,3)
F

$$

∪ D(δ−3,c)

F

$$

∪ A(γ0,1, γ3,1)

F

yy
F (E)

⊂

��

= D(γ1)

⊂⊂
��

∪ D(β2)

⊂⊂
��

∪ D(β−3 )

=

��

∪ D(δ−c )

⊂⊂
��

E

⊂

��

= D(β1,2)

⊂⊂
��

∪ D(β−2,3)

⊂⊂

zz

∪ D(δ−3,c)

=

!!

∪ A(γ0,1, γ3,1)

=

__
H = D(β0,1) ∪ A(γ0,1, γ3,1) ∪A(β3,1, β3,0) ∪ A(γ3,0, δ

+
3,c) ∪ D(δ−3,c)

In particular, we deduce that F (Q) ⊂ E and F (E) ⊂ E ⊂ H. Furthermore, following
compact inclusions, it turns out that F 2(Q) ⊂ E.

Now we have a quasiregular map F from the Riemann sphere to itself whose dynamics
follows that one of the weighted dynamical tree (HP , w) (see Figure 4.c). We need to find a
holomorphic map f conjugated to F so that f follows the same dynamics as well (f should sat-
isfy the requirements of Theorem 3 and Theorem 4). To do so, we will apply the Shishikura’s
fundamental lemma for quasiconformal surgery (stated for the first time in [Shi87]) that we
recall below.
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Figure 9: The map F coming from Lemma 7. On the left topological sphere, the black area
stands for Q and the gray area stands for E. On the right topological sphere, the
black area stands for F (Q) and the gray area stands for F (E).

Lemma 8 (Shishikura’s fundamental lemma for quasiconformal surgery). Let g : Ĉ → Ĉ be
a quasiregular map. Assume there are an open set E ⊂ Ĉ and an integer N > 0 which satisfy
the following conditions:

• g(E) ⊂ E;

• g is holomorphic on E;

• g is holomorphic on an open set containing Ĉ− g−N(E).

Then there exists a quasiconformal map ϕ : Ĉ→ Ĉ such that the map ϕ◦g◦ϕ−1 is holomorphic.

The result stated in [Shi87] is a little more general but it easily implies the more explicit
statement of Lemma 8 (we refer readers to [Shi87] and [BF13] for a proof and more details).

Here our map F satisfies the three assumptions (indeed F is holomorphic on H hence on
E ⊂ H and Lemma 7 implies that Ĉ− F−2(E) ⊂ Ĉ−Q = H), so applying Lemma 8 gives a
holomorphic map f : Ĉ→ Ĉ quasiconformally conjugated to F : Ĉ→ Ĉ as desired.

Lemma 9. The rational map f : Ĉ → Ĉ obtained above has degree d̂ + d3 and has a super-
attracting cycle {z0, z1, z2, z3} of period 4 which is accumulated by every critical orbit. In
particular, f is hyperbolic.

Proof. Since f is quasiconformally conjugated to F , the critical points of f are images under
a quasiconformal map ϕ of the critical points of F with same multiplicities. More precisely,
the critical points of f are:

• z1 = ϕ(ẑ1) ∈ ϕ(D(β1,2)) ⊂ ϕ(E) with multiplicity d1 − 1;

• z2 = ϕ(ẑ2) ∈ ϕ(D(β−2,3)) ⊂ ϕ(E) with multiplicity d2 − 1;

• d0 + d3 critical points counted with multiplicity in ϕ(A(γ0,1, γ3,1)) ⊂ ϕ(E), which one of
them is given by z0 = ϕ(c);

• z3 = ϕ(ẑ0) ∈ ϕ(D(δ−3,c)) ⊂ ϕ(E) with multiplicity d3 − 1.
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According to the Riemann-Hurwitz formula, it follows that the number of critical points
counted with multiplicity is given by

2 deg(f)− 2 = (d1 − 1) + (d2 − 1) + (d0 + d3) + (d3 − 1)

and hence
deg(f) =

1

2
(d0 + d1 + d2 − 1) + d3 = d̂+ d3.

Notice that {z0, z1, z2, z3} forms a super-attracting cycle of period 4. Moreover every
critical point of f lies in the forward invariant open set ϕ(E), namely a disjoint union of four
open subsets of Ĉ each containing one point of {z0, z1, z2, z3}. Consequently, every critical
orbit accumulates this super-attracting cycle.

4 Properties
The aim of this section is to achieve the proofs of Theorem 3 and Theorem 4. More precisely
we are going to show that the rational map f constructed in the previous section satisfies all
the requirements of these two theorems. Section 4.1 focuses on the dynamical properties of
f (stated in Theorem 3), and Section 4.2 deals with the topological properties of the Julia
component of f (stated in Theorem 4).

In order to lighten notations, we forget the quasiconformal map ϕ provided by Lemma
8 to denote the image under ϕ of any set introduced in the previous section (equivalently
speaking, we act as if the quasiregular map F constructed in the previous section is actually
holomorphic).

4.1 Exchanging dynamics

Consider the following pairwise disjoint open annuli (see Figure 10).

A0 = A(α0, β0), A1 = A(α1, β1), A2 = A(α2, β2), and A3 = A(β+
3 , β

−
3 ).

Then, consider the connected components of the preimage under f of A0∪A1∪A2∪A3 which
are contained as essential subannulus in one of these open annuli, namely:

• A0,1 = A(α0, β0,1);

• A1,2 = A(α1, β1,2);

• A2,0 = A(α2, β2,0) where β2,0 is the preimage of β0 in B(ẑ2) (see Figure 5);

• A2,3 = A(β+
2,3, β

−
2,3) where β+

2,3 is the preimage of β+
3 in B(ẑ2) (see Figure 5);

• A3,0 = A(α3,0, β3,0) where α3,0 is the preimage of α0 in A(β3,1, β3,0) (see Lemma 4);

• A3,1 = A(β3,1, α3,1) where α3,1 is the preimage of α1 in A(β3,1, β3,0) (see Lemma 4).

Notice that the notation is chosen so that each Ai,j is contained as essential subannulus in
Ai, and f |Ai,j : Ai,j → Aj is a degree di covering. Remark that some connected components
of f−1(A3) are included in A3 as well (from Lemma 5, see Figure 8), but none of them is
contained in A3 as essential subannulus.
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Figure 10: The various annuli considered to encode the exchanging dynamics.

Denote by A the collection of all connected components of the non-escaping set induced by
f |U : U → A0∪A1∪A2∪A3 on the union of subannuli U = A0,1∪A1,2∪A2,0∪A2,3∪A3,0∪A3,1.

A =
{
J connected component of {z ∈ U / ∀n > 0, fn(z) ∈ U}

}
Let Jα be the continuum in Ĉ which corresponds to the Julia set J(f̂) of f̂ (more precisely,

Jα is the image of J(f̂) under the quasiconformal map ϕ provided by Lemma 8). Remark
that Jα is fixed under iteration of f and Jα intersects U (along α0 ∪ α1 ∪ α2). Denote by Aα
the collection of all continua which are eventually mapped onto Jα and whose every iterate
intersects U .

Aα =
{
J connected component of

⋃
n>0

f−n(Jα) such that ∀n > 0, fn(J) ∩ U 6= ∅
}

Finally, denote by A? the union A∪Aα. As collection of pairwise disjoint continua, A? is
endowed with the topology coming from the usual distance between continua on the Riemann
sphere Ĉ (equipped with the spherical metric). It turns out that f induced a topological
dynamical system on A?. This dynamical system may be encoded by the weighted dynamical
tree (HP , w) (see Section 2.2) as it is shown in the following lemma.

Lemma 10. There exists a homeomorphism h : A? → J (HP ) such that the following diagram
commutes.

A?
f //

h
��

A?

h
��

J (HP )
P

// J (HP )

Moreover for every J ∈ A, the restriction map f |J has degree w(ek) = dk where ek is the edge
of HP which contains h(J).

Proof. At first, remark there is a subannulus Ai,j for some i, j ∈ {0, 1, 2, 3} if and only if
the (i, j)-entry of the transition matrix M = (mi,j)i,j∈{0,1,2,3} is non-zero (see Definition 1).
Indeed, recall that the transition matrix is

M =


0 1

d0
0 0

0 0 1
d1

0
1
d2

0 0 1
d2

1
d3

1
d3

0 0

 .
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According to this remark, we introduce the subshift of finite type (Σ, σ) associated to the
transition matrix M , namely the restriction of the 4-to-1 shift map on the subset of all
infinite sequences of digits in {0, 1, 2, 3} such that every adjacent pair of entries lies in
{(0, 1), (1, 2), (2, 0), (2, 3), (3, 0), (3, 1)}.

Σ =
{
s = (s0, s1, s2, . . . ) ∈ {0, 1, 2, 3}N / ∀k > 0, msk,sk+1

6= 0
}

σ : Σ→ Σ, s = (s0, s1, s2, . . . ) 7→ σ(s) = (s1, s2, s3, . . . )

Σ is endowed with the topology coming from the following distance, making it a Cantor set.

∀s, s′ ∈ Σ, d(s, s′) =
∑
k>0

|sk − s′k|
4k

Let Sα be the subset of Σ of three infinite sequences of repeating 0, 1, 2 digits.

Sα =
{

(0, 1, 2, 0, 1, 2, 0, 1, 2, . . . ), (1, 2, 0, 1, 2, 0, 1, 2, 0, . . . ), (2, 0, 1, 2, 0, 1, 2, 0, 1, . . . )
}

We shall identify these three sequences in Σ, and similarly every subset of sequences which
are eventually mapped in Sα after the same itinerary under σ. More precisely, let ∼ be the
equivalence relation on Σ defined by

∀s, s′ ∈ Σ, s ∼ s′ ⇐⇒ ∃n > 0 /

{
∀k ∈ {0, 1, . . . , n}, sk = s′k
σn(s), σn(s′) ∈ Sα

and let Σ? be the topological quotient space Σ/ ∼. Remark that Σ? is a Cantor set as well for
the quotient topology induced by ∼. Abusing notations, every equivalence class containing
only one infinite sequence s ∈ Σ which is not eventually mapped in Sα is still denoted by
s ∈ Σ?, and the map induced by the shift map on Σ? is still denoted by σ.

We are going to show that (A?, f) is topologically conjugated to (Σ?, σ). To do so, consider
the itinerary map h1 : A → Σ? defined by

∀J ∈ A, h1(J) = (s0, s1, s2, . . . ) with fk(J) ⊂ Ask for every k > 0.

This map is well defined and injective by definition of A.
To prove that h1 extends to a homeomorphism from A? to Σ?, we first define by induction

for every s = (s0, s1, s2, . . . ) ∈ Σ an infinite sequence of subannuli (As0,s1,...,sn)n>0 such that
for every n > 0, As0,s1,...,sn is contained in As0 as essential subannulus, and f |As0,s1,...,sn :
As0,s1,...,sn → As1,s2,...,sn is a degree ds0 covering. Denote by As = As0,s1,s2,... the limit set⋂
n>0As0,s1,...,sn which is a continuum.
If s is not eventually mapped in Sα, then As0,s1,...,sn is contained in U = A0,1∪A1,2∪A2,0∪

A2,3 ∪ A3,0 ∪ A3,1 for every n > 0 large enough and thus As is a connected component of the
non-escaping set, that is an element of A. Moreover, h1(As) = s holds from definition of the
itinerary map h1.

On the contrary, if s is in Sα, then As is either α0, α1 or α2, and in particular As is
contained in Jα. More generally, if s is eventually mapped in Sα, then As is contained in a
continuum J which is eventually mapped onto Jα, that is an element of Aα. Moreover, for
every s′ ∈ Σ such that s′ ∼ s, As′ is contained in the same continuum J ∈ Aα.

Therefore h1 extends to a bijective map from A? to Σ?, by associating to J ∈ Aα the
equivalence class h1(J) ∈ Σ∗ of the itinerary s = (s0s1, s2, . . . ) ∈ Σ of any subcontinuum in
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J which is eventually mapped into α0 ∪ α1 ∪ α2. Furthermore, this extension is actually a
conjugation between f and σ.

∀J ∈ A?, h1(f(J)) = σ(h1(J))

It remains to prove the continuity. Fix J ∈ A? and let s = (s0, s1, s2, . . . ) ∈ Σ be a class
representative of h1(J). Let J ′ be another element of A? such that some class representative
s′ = (s′0, s

′
1, s
′
2, . . . ) ∈ Σ of h1(J ′) is arbitrary close to s. That implies the first n digits of s

and s′ coincide for arbitrary large n > 0. In particular, As and As′ are contained in As0,s1,...,sn .
Remark that fn|As0,s1,...,sn : As0,s1,...,sn → Asn is a covering of degree ds0ds1 . . . dsn−1 tending
to infinity with n (since assumption (H2) implies that at least two of weights d0, d1, d2, and
d3 are > 2, see Definition 1). Therefore As and As′ are contained in an open annulus of
arbitrary small modulus. Then, using extremal length (see [Ahl73]), it follows that As ⊂ J
and As′ ⊂ J ′ are arbitrary close, hence J and J ′ are arbitrary close in A?. Consequently h−11

is continuous. The continuity of h1 follows from a similar argument.
Similarly, we can show that (J (HP ), P ) is topologically conjugated to (Σ?, σ) by a home-

omorphism h2 : J (HP )→ Σ?. Indeed recall that the dynamical tree HP is described by a set
of four edges e0, e1, e2, e3 where P acts as follows (see Section 2.2).

P (e0) = e1
P (e1) = e2
P (e2) = e0 ∪ e3
P (e3) = e0 ∪ e1

Thus, we may find four connected open subsets I0, I1, I2, and I3 respectively included in e0,
e1, e2, and e3 together with six connected open subsets I0,1, I1,2, I2,0, I2,3, I3,0, and I3,1 such
that:

• each Ii,j is contained in Ii and P |Ii,j : Ii,j → Ij is a homeomorphism;

• and J (HP ) =
{
z ∈ V / ∀n > 0, P n(z) ∈ V

}
∪
{
z point in

⋃
n>0 P

−n(α) ∩ V
}

where
V = I0,1 ∪ I1,2 ∪ I2,0 ∪ I2,3 ∪ I3,0 ∪ I3,1.

Consequently, we can show as above that the itinerary map h2 : {z ∈ V / ∀n > 0, P n(z) ∈
V } → Σ? extends to a homeomorphism from J (HP ) to Σ? which conjugates the dynamics of
P and σ.

Finally, taking h = h−12 ◦ h1 concludes the proof.

Remark that the proof of Theorem 3 is almost completed. Indeed point (i) comes from
Lemma 9 while points (ii) and (iii) follows from Lemma 10 (since A is, by definition, the
set of continua J in A? such that J is not eventually mapped under iteration to the fixed
continuum Jα, or equivalently, such that h(J) is not eventually mapped under iteration to
the fixed branching point α). It only remains to prove that A? is actually the set Jcrit(f) of
all postcritically separating Julia components of f .

Lemma 11. The following equality of sets holds.

A? = Jcrit(f)

Proof. Recall that the postcritical set is contained in the forward invariant set E = D(β1,2)∪
D(β−2,3) ∪ D(δ−3,c) ∪ A(γ0,1, γ3,1) (see Lemma 7 and Figure 9) and each point of the super-
attracting cycle {z0, z1, z2, z3} lies in a different connected component of E. In particular
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J(f) is the set of all points whose orbit remains in Ĉ − E = A0 ∪ A1 ∪ A2 ∪ A3 ∪Kα where
Kα is the complement in Ĉ of B(ẑ0) ∪B(ẑ1) ∪B(ẑ2) (see Figure 10).

It follows that every element J in A is a Julia component. Moreover J is postcritically
separating as limit set of nested essential subannuli which separate each the super-attracting
cycle {z0, z1, z2, z3} (see proof of Lemma 10). Therefore A ⊂ Jcrit(f).

Similarly, every element J in Aα is a Julia component. Moreover recall that J intersects U
along a limit set of nested essential subannuli which separate each the super-attracting cycle
{z0, z1, z2, z3} (see proof of Lemma 10). Therefore Aα ⊂ Jcrit(f) and A? = A∪Aα ⊂ Jcrit(f).

Conversely, let J be a postcritically separating Julia component of f . Remark that J is
not contained in Kα− Jα. Indeed, recall that every connected component of Ĉ− Jα is simply
connected (see Lemma 1) and that ∂Kα = α0 ∪ α1 ∪ α2 ⊂ Jα, therefore every connected
compact subset of any connected component of Kα − Jα does not separate the postcritical
points. Consequently either J is Jα ∈ Aα ⊂ A? or fn(J) stays in A0 ∪A1 ∪A2 ∪A3 for every
n > 0. Assume that J is not Jα.

Recall that every connected component of the preimage under f of A0∪A1∪A2∪A3 which
is contained in this compact union, is contained either in U or in some connected components
of f−1(A3) included in A3 (from Lemma 5, see Figure 8), says A′3,3. However every A′3,3 is not
contained in A3 as essential subannulus, and hence does not separate the postcritical points.
In particular J is not contained in any A′3,3. Furthermore, J can not eventually fall in some
A′3,3 after some iterations of f , otherwise fn(J) would not be postcritically separating for
some n > 0 contradicting the fact that J is postcritically separating. It follows that fn(J)
stays in U for every n > 0 and hence J ∈ A? that concludes the proof.

4.2 Topology of buried Julia components

Existence of each of the three types of buried Julia components which occurs in J(f) is shown
in this section, that proofs Theorem 4.

Lemma 12 (Point type buried Julia components). There exist uncountably many buried Julia
components in J(f) which are points.

Proof. Let A′3,3 = A(β+
3,3, β

−
3,3) be a connected component of f−1(A3) contained in A3 =

A(β+
3 , β

−
3 ) (from Lemma 5, see Figure 8) where β+

3,3 and β−3,3 are preimages of β+
3 and β−3 ,

respectively. Recall that A′3,3 is not contained in A3 as essential subannulus. In particular,
the connected component of Ĉ− β+

3,3 containing A′3,3 is an open disk D(β+
3,3) contained in A3

and such that f |D(β3,3) : D(β+
3,3) → D is a homeomorphism where D = D(β+

3 ) is the open
disk bounded by β+

3 and containing A3.
Using notations coming from the proof of Lemma 10, consider the subannulus A3,0,1,2,3

contained in A3 as essential subannulus and such that f 4|A3,0,1,2,3 : A3,0,1,2,3 → A3 is a degree
d3d0d1d2 covering. Since assumption (H2) implies that at least two of weights d0, d1, d2, and
d3 are > 2 (see Definition 1), it follows that this degree is > 2 and hence, there are at least 2
disjoint preimages under f 4|A3,0,1,2,3 of D(β+

3,3) in A3,0,1,2,3 ⊂ A3 ⊂ D, says D0 and D1.
Finally we have two disjoint open disks D0 and D1 in D such that f 5|D0 : D0 → D

and f 5|D1 : D1 → D are homeomorphisms. It is then a classical exercise to prove that the
non-escaping set

D = {z ∈ D0 ∪D1 /∀n > 0, (f 5)n ∈ D0 ∪D1}
is a Cantor set homeomorphic to the space of all sequences of two digits Σ2 = {0, 1}N. In par-
ticular, D contains uncountably many points. Furthermore every point in D is a buried point
in J(f) since A3 ⊂ D contains infinitely many postcritically separating Julia components.
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Lemma 13 (Circle type buried Julia components). There exist uncountably many buried
Julia components in J(f) which are wandering Jordan curves.

Proof. This is mostly a consequence of the main result in [PT00] claiming that every wander-
ing Julia component of a geometrically finite rational map is either a point or a Jordan curve.
Here our map f is hyperbolic (from Lemma 9) therefore every wandering Julia component
in Jcrit(f) must be a Jordan curve (since a point is obviously not postcritically separating).
Moreover, according to the proof of Lemma 10, the set of wandering Julia components in
Jcrit(f) exactly corresponds to the set of all the infinite sequences in Σ? which are not even-
tually periodic. In particular, there are uncountably many such Julia components. Finally,
uncountably many of them must be buried since the Fatou set only has countably many Fatou
domains and each of them only has countably many Jordan curves as connected components
of its boundary.

Lemma 14 (Complex type buried Julia components). Jα and all its countably many preim-
ages, are buried Julia components in J(f).

Proof. Coming back to the proof of Lemma 10, remark that every infinite sequence in Sα is
not isolated in Σ. Therefore, αk has no intersection with the boundary of any Fatou domain
contained in B(ẑk) for every k ∈ {0, 1, 2}. It remains to show that Jα has no intersection with
the boundary of any Fatou domain in Kα = Ĉ − (B(ẑ0) ∪ B(ẑ1) ∪ B(ẑ2)). Recall that every
connected component of Kα − Jα, that is a connected component of Ĉ − Jα, is eventually
mapped under iteration onto B(ẑk) for some k ∈ {0, 1, 2} (since f is defined to be f̂ on
Kα ⊂ D(β0,1)). By continuity of f , it follows that Jα has no intersection with the boundary
of any Fatou domain contained in any connected component of Kα − Jα. Consequently Jα is
buried. The same holds as well for every preimage of Jα by continuity of f .

5 Explicit formula in the cubic case
In this section, we proof Theorem 1 stated in the introduction (see Section 1). Firstly we
show that a particular choice of the weight function w gives a rational map of degree 3 (in
Lemma 15). Then we compute an explicit formula for this particular example.

Lemma 15. The following weight function on the set of edges of HP

(d0, d1, d2, d3) = (1, 2, 2, 1)

satisfies assumptions (H1) and (H2) from Theorem 3 and Theorem 4. In particular there are
some rational maps of degree 3 whose Julia set contains buried Julia components of several
types:

(point type) uncountably many points;
(circle type) uncountably many Jordan curves;

(complex type) countably many preimages of a fixed Julia component which is quasicon-
formally homeomorphic to the connected Julia set of f̂ : z 7→ 1

(z−1)2 .

Proof. Assumption (H1) is obviously satisfied, indeed

d̂ =
1

2
(d0 + d1 + d2 − 1) =

1

2
(1 + 2 + 2− 1) = 2 = max{d0, d1, d2}.
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For assumption (H2), the transition matrix (see Definition 1) for this choice of weight
function is given by

M =


0 1 0 0
0 0 1

2
0

1
2

0 0 1
2

1 1 0 0


and an easy computation shows that λ(HP , w) is the largest root of X4 − 1

2
X − 1

4
that is

λ(HP , w) ≈ 0.918 < 1.
Applying Theorem 3 and Theorem 4 gives a rational map of degree d̂+ d3 = 2 + 1 = 3.
Furthermore, recall that the rational map f̂ which appears in Theorem 4 has degree d̂ = 2

and has only one critical orbit which is a super-attracting cycle {ẑ0, ẑ1, ẑ2} of period 3 such
that the local degrees of f̂ at ẑ0, ẑ1 and ẑ2 are d0 = 1, d1 = 2 and d2 = 2, respectively. Up to
conjugation by a Möbius map, we may assume that ẑ0 = 0, ẑ1 = 1 and ẑ2 =∞. It turns out
that there is then only one such quadratic rational map which is f̂ : z 7→ 1

(z−1)2 .

ẑ0 = 0 1:1 // ẑ1 = 1 2:1 // ẑ2 =∞

2:1

vv

Remark that this choice of weight function is the only one which gives a degree 3 and
which satisfies assumptions (H1) and (H2).

The construction by quasiconformal surgery detailed in Section 3 does not provide an
algebraic formula for the rational map f in Theorem 3 and Theorem 4. Furthermore the
degree d̂ + d3 of f increases quickly with the weight function w so the algebraic relations
behind are complicated to study. However the particular rational map of degree 3 coming
from Lemma 15 is simple enough to allow a computation by hand of an algebraic formula.

Let f be a rational map coming from the construction detailed in Section 3 for the partic-
ular choice of weight function in Lemma 15 . Recall that the local degrees of f at z1, z2 and z3
are d1 = 2, d2 = 2 and d3 = 1, respectively. In particular, z1 and z2 are simple critical points.
It remains d0 +d3 = 1+1 = 2 critical points counted with multiplicity coming from definition
of f near z0 (see Lemma 3), namely two simple critical points, one is z0 by construction and
the orbit of the other one accumulates the super-attracting cycle {z0, z1, z2, z3}.

Up to conjugation by a Möbius map, we assume that z1 = 1, z2 = ∞ and z3 = 0. So 1
and∞ are critical points whereas 0 is a singular point. In order to simplify notations, denote
by λ the critical point z0 (λ will be the parameter of our family) and by λ′ the last critical
point.

z0 = λ 2:1 // z1 = 1 2:1 // z2 =∞ 2:1 // z3 = 0

1:1

vv

λ′ 2:1 // . . .

Since f has degree 3, it is of the form

f : z 7→ a3z
3 + a2z

2 + a1z + a0
b3z3 + b2z2 + b1z + b0

.
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Since z1 = 1 is mapped to z2 =∞ with a local degree 2, the denominator may factor as

f : z 7→ a3z
3 + a2z

2 + a1z + a0
(z − 1)2(b′1z + b′0)

.

We do likewise for z2 =∞ which is mapped to z3 = 0 with a local degree 2.

f : z 7→ a1z + a0
(z − 1)2(b′1z + b′0)

.

Now use the fact that z3 = 0 is mapped to z0 = λ to get

f : z 7→ a1z + λ

(z − 1)2(b′1z + 1)
. (3)

It remains two informations coming from the fact that z0 = λ is mapped to z1 = 1 with a
local degree 2. Namely f(λ) = 1 and f ′(λ) = 0 which lead to the two following equations
satisfied by a1 and b′1.{

(λ− 1)2(λb′1 + 1) = λ(a1 + 1)

a1(λ− 1)2(λb′1 + 1) = λ(a1 + 1)
[
(3λ2 − 4λ+ 1)b′1 + 2(λ− 1)

]
Remark that we may easily simplify the second equation by using the first one (luckily){

(λ− 1)2(λb′1 + 1) = λ(a1 + 1)
a1 = (3λ2 − 4λ+ 1)b′1 + 2(λ− 1)

or equivalently {
λa1 − λ(1− λ)2b′1 = 1− 3λ+ λ2

a1 − (1− λ)(1− 3λ)b′1 = −2 + 2λ

and solving this linear system of two equations gives
a1 =

(1− 3λ)(1− 3λ+ λ2)− λ(1− λ)(−2 + 2λ)

λ(1− 3λ)− λ(1− λ)
=

1− 4λ+ 6λ2 − λ3

−2λ2

b′1 =
(1− 3λ+ λ2)− λ(−2 + 2λ)

−λ(1− λ)2 + λ(1− λ)(1− 3λ)
=

1− λ− λ2

−2λ2(1− λ)

.

Finally, putting these expressions in expression (3) leads to the following formula for f which
depends on the parameter λ.

fλ : z 7→
(1− λ)

[
(1− 4λ+ 6λ2 − λ3)z − 2λ3

]
(z − 1)2

[
(1− λ− λ2)z − 2λ2(1− λ)

]
Remark that fλ(z) = 1

(z−1)2 (1 − 4λ + Oλ→0(λ
2)) for every complex number z, thus fλ is

actually a particular perturbation of f0 = f̂ : z 7→ 1
(z−1)2 .

Some more computations provide an algebraic formula for the critical point λ′, namely

λ′ = − λ(1− 6λ+ 11λ2 − 10λ3 + 5λ4)

(1− λ− λ2)(1− 4λ+ 6λ2 − λ3)
= −λ+ O

λ→0
(λ2).

According to the construction detailed in Section 3, there exist some choices of λ such
that fλ satisfies Theorem 1. Recall that the two critical points z0 = λ and λ′ ∼λ→0 −λ should
lie in B(ẑ0) (see Section 3), and hence near ẑ0 which corresponds to z3 = 0. Indeed, we can
roughly prove for every |λ| > 0 small enough that
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• fλ(λ′) lies in a disk centered at z1 = 1 and of radius of order |λ|;

• the image under fλ of a disk centered at z1 = 1 and of radius of order |λ| is contained
in the complement of a disk centered at 0 (thus containing z2 = ∞) and of radius of
order |λ|−2;

• the image under fλ of the complement of a disk centered at 0 (thus containing z2 =∞)
and of radius of order |λ|−2 is contained in a disk centered at z3 = 0 and of radius of
order |λ|4;

• the image under fλ of a disk centered at z3 = 0 and of radius of order |λ|4 is contained
in a disk centered at z0 = λ and of radius of order |λ|2;

• the image under fλ of a disk centered at z0 = λ and of radius of order |λ|2 is contained
in a disk centered at z1 = 1 and of radius of order |λ|3.

It turns out that the orbit of the critical point λ′ accumulates the super-attracting cycle
{z0, z1, z2, z3} for every |λ| > 0 small enough. Consequently, we may encode the exchanging
dynamics of Julia components of fλ as it is explained in Section 4, proving that fλ satisfies
Theorem 1 for every |λ| > 0 small enough.

Numerically, picking any parameter λ in the big hyperbolic component surrounding 0 of
the parameter space of the family fλ (see Figure 11.a) provides a Persian Carpet example in
the dynamical plane (see Figure 11.b).

Figure 11: a) The parameter plane of fλ for |λ| / 10−2, that includes the bifurcation locus
(in black) and hyperbolic parameters (in white). 0 is at the center of the picture
and the big hyperbolic component around corresponds to the Persian carpets.
b) The dynamical plane for λ ≈ 10−3, that includes the Persian carpet J(fλ) (in
black) and the Fatou set (in white).
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6 Appendix
In this section, we collect some technical results used in the construction of Section 3.

6.1 A particular solution of the Hurwitz problem

The first result of this section deals with the Hurwitz problem on the topological sphere S2.
Namely given an abstract branch data of degree d > 2, that is a table of positive integers
D = (di,j)(i,j)∈I where I = {(i, j) / i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , ki}} for some positive
integers n, k1, k2, . . . , kn and such that for every i ∈ {1, 2, . . . , n}:

di,j > 2 for some j ∈ {1, 2, . . . , ki}, and
ki∑
j=1

di,j = d, (4)

we consider the question on realizability of this abstract branch data by a branched covering
on S2, that is the existence of a degree d branched covering H : S2 → S2 and a finite collection
of distinct points X = {xi,j / (i, j) ∈ I} in S2 such that:

• ∀(i, j) ∈ I, H(xi,j) = yi for some yi ∈ S2;

• H|S2−X : S2 −X → S2 − {yi / i ∈ {1, 2, . . . , n}} is a degree d covering;

• ∀(i, j) ∈ I, the local degree of H at xi,j is di,j.

Adolf Hurwitz has proved (see [Hur91]) that the solution is as follows. Let Sd be the
symmetric group of all permutations of {1, 2, . . . , d}. Then D is realizable if and only if there
exist permutations σ1, σ2, . . . , σn in Sd such that:

(i) ∀i ∈ {1, 2, . . . , n}, σi is a product of ki disjoint cycles of length di,1, di,2, . . . , di,ki ;

(ii) σ1σ2 . . . σn = 1 in Sd;

(iii) 〈σ1, σ2, . . . , σn〉 transitively acts on {1, 2, . . . , d}.

However, such algebraic conditions are rather difficult to verify for an arbitrary abstract
branch data D. Easier sufficient and necessary conditions have been provided in some specific
cases (see for instance [EKS84] or [Bar01]). The following lemma gives the solution in a very
special case involved in Lemma 1.

Lemma 16 (An Hurwitz solution). Let D be an abstract branch data of degree d > 2 such
that n = 3 and di,j = 1 for every i ∈ {1, 2, 3} and j > 2. Then D is realizable if and only if
the following condition is satisfied.

d =
1

2
(d1,1 + d2,1 + d3,1 − 1) (H1’)

Remark that in this special case, the abstract branch data D is uniquely determined by a
degree d > 2 together with three positive integers d1,1, d2,1, and d3,1 such that 2 6 di,1 6 d
for every i ∈ {1, 2, 3}.
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Proof. The necessity of condition (H1’) comes from the Riemann-Hurwitz formula. Indeed if
there exists a degree d branched covering h : S2 → S2 which realizes D then the number of
critical points counted with multiplicity is given by

2d− 2 = (d1,1 − 1) + (d2,1 − 1) + (d3,1 − 1)

since there are no more critical points than x1,1, x2,1, and x3,1 from assumption.
For the sufficiency of condition (H1’), consider the two following cycles in Sd

σ1 = (1, 2, . . . , d1,1) and σ2 = (d, d− 1, . . . , d− d2,1 + 1)

of length d1,1 and d2,1 respectively. Notice that d1,1 = (d−d2,1 + 1) + (d−d3,1) from condition
(H1’), and d3,1 6 d from assumption (4). Therefore d − d2,1 + 1 6 d1,1 and in particular
〈σ1, σ2〉 transitively acts on {1, 2, . . . , d}.

A simple computation shows that the composition of σ1 and σ2 (with σ1 performed first)
is given by

σ1σ2 = (1, 2, . . . , d− d2,1, d, d− 1, . . . , d1,1)

which is a cycle of length (d− d2,1) + (d− d1,1 + 1) = d3,1 from condition (H1’). Denote by σ3
the inverse permutation (σ1σ2)

−1 which is a cycle of length d3,1 as well.
Finally we get three permutations σ1, σ2, and σ3 in Sd which satisfy the Hurwitz conditions.

Indeed (i) holds since σi is a cycle of length di,1 for every i ∈ {1, 2, 3}, (ii) directly follows from
definition of σ3, and (iii) holds since 〈σ1, σ2〉 = 〈σ1, σ2, σ3〉 transitively acts on {1, 2, . . . , d}.

6.2 An inverse Grötzsch’s inequality

The following useful result is due to Cui Guizhen and Tan Lei [CT11]. It is the key ingredient
of the proof of Lemma 2.

Lemma 17 (Inverse Grötzsch’s inequality). Let D,D′ be two disjoint marked hyperbolic disks
in Ĉ whose boundaries (not necessarily disjoint) are respectively denoted by α, α′. Then there
exists a positive constant C > 0 such that for every pair of equipotentials β in D and β′ in
D′ the following inequalities hold:

mod(A(α, β)) + mod(A(α′, β′)) 6 mod(A(β, β′)) 6 mod(A(α, β)) + mod(A(α′, β′)) + C.

The left hand side is the classical Grötzsch’s inequality. The right hand side is a conse-
quence of Koebe 1/4 Theorem. We refer readers to [CT11] for a complete proof.

6.3 An annulus-disk holomorphic map

The following lemma is a technical ingredient in the construction of Section 3 needed to
holomorphically map an annulus onto a disk (see Lemma 3). It is very similar to the key
lemma in [PT99] (see also [BF13]) about an annulus-disk branched covering. However, our
annulus-disk map here requires to be holomorphic (see Lemma 7 and Lemma 8).

Lemma 18 (Annulus-disk holomorphic map). Let n, n′ be two positive integers. Then there
exists a holomorphic branched covering G : A(γ, γ′)→ D from an open annulus in Ĉ bounded
by a pair of disjoint quasicircles γ, γ′ onto the open unit disk D such that:

(i) G has degree n+ n′ and has n+ n′ critical points counted with multiplicity;
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(ii) G continuously extends to γ ∪ γ′ by a degree n covering G|γ : γ → ∂D and a degree n′
covering G|γ′ : γ′ → ∂D;

(iii) mod(A(γ, γ′)) 6 1.

Proof. There are many ways to prove the existence of such a map. Here this proof uses the
properties of the McMullen’s family

g0,λ : z 7→ zn +
λ

zn′

for |λ| > 0 small enough (see [McM88] and [DHL+08] for a complete study of this family).
Recall that g0,λ has degree n+ n′, and its critical set contains n+ n′ simple critical points of
the form

ck =

(
n′

n

)1/(n+n′)

|λ|1/(n+n′)e2kiπ/(n+n′) where k ∈ {1, 2, . . . , n+ n′}

(the other critical points are ∞ of multiplicity n − 1 if n > 1 and 0 of multiplicity n′ − 1 if
n′ > 1). Moreover, the preimages of 0 are of the form

g−10,λ(0) = {|λ|1/(n+n′)e2kiπ/(n+n′) / k ∈ {1, 2, . . . , n+ n′}}.

Let A be the preimage of the open unit disk D, namely A = g−10,λ(D). We are going to prove
that for every |λ| > 0 small enough A is connected and actually an open annulus separating
0 and ∞. Indeed remark that for every z ∈ C with modulus |z| = |λ|1/(n+n′) we have

|g0,λ(z)| =
∣∣∣∣zn +

λ

zn′

∣∣∣∣ 6 |λ|n/(n+n′) +
|λ|

|λ|n′/(n+n′)
= 2|λ|n/(n+n′).

Similarly for every k ∈ {1, 2, . . . , n+ n′} we have

|g0,λ(ck)| 6
(
n′

n

)n/(n+n′)
|λ|n/(n+n′) +

( n
n′

)n′/(n+n′) |λ|
|λ|n′/(n+n′)

= C|λ|n/(n+n′)

with

C =

(
n′

n

)n/(n+n′)
+
( n
n′

)n′/(n+n′)
=

(
n+ n′

n

)n/(n+n′)
×
(
n+ n′

n′

)n′/(n+n′)
6 2

(by using the arithmetic-geometric mean inequality xn/(n+n′) × yn′/(n+n′) 6 n
n+n′

x+ n′

n+n′
y).

So if λ is such that 0 < 2|λ|n/(n+n′) < 1 then A contains the circle centered at 0 and of
radius |λ|1/(n+n′) where all the preimages of 0 lie, together with n + n′ simple critical points
of g0,λ. In particular, A is a connected set which separates 0 and ∞ and it follows from the
Riemann-Hurwitz formula applied to the degree n+n′ branched covering g0,λ|A : A→ D that
A is an open annulus.

Now let γ be the outer boundary of A, namely the boundary of the connected component of
Ĉ−A containing∞, and γ′ be the inner boundary of A, namely the boundary of the connected
component of Ĉ−A containing 0. It turns out that A = A(γ, γ′) and G = g0,λ|A : A(γ, γ′)→ D
satisfy (i). The point (ii) follows from the fact that g0,λ realizes a degree n (respectively n′)
branched covering on the the connected component of Ĉ − A containing ∞ (respectively 0)
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with no critical points on the boundary. Moreover γ and γ′ are quasicircles as preimages of
the unit circle ∂D by conformal maps.

For the point (iii), remark that for every R > 1 we have:

|z| 6 1
R1/n′ |λ|1/(n+n

′) ⇒ |g0,λ(z)| > |λ|
|z|n′ − |z|

n > |λ|n/(n+n′)
(
R− 1

Rn

)
,

and |z| > R1/n|λ|1/(n+n′) ⇒ |g0,λ(z)| > |z|n − |λ|
|z|n′ > |λ|

n/(n+n′)
(
R− 1

Rn′

)
.

In particular if R = 2|λ|−n/(n+n′), then max{ 1
Rn
, 1
Rn′
} 6 1

R
< 1

2
R (since λ was chosen so that

0 < 2|λ|n/(n+n′) < 1 that implies R > 4) and hence

|z| 6 1

R1/n′
|λ|1/(n+n′) or |z| > R1/n|λ|1/(n+n′) ⇒ |g0,λ(z)| > |λ|n/(n+n′)1

2
R = 1.

Consequently the preimage A = A(γ, γ′) of the unit disk is contained as essential subannulus
in the round annulus {z ∈ C / 1

R1/n′ |λ|1/(n+n
′) < |z| < R1/n|λ|1/(n+n′)} and the Grötzsch’s

inequality gives

mod(A(γ, γ′)) 6
1

2π
log

(
R1/n|λ|1/(n+n′)

1
R1/n′ |λ|1/(n+n

′)

)
=

1

2π

(
1

n
+

1

n′

)
log(R).

In particular, if λ is fixed so that 2|λ|n/(n+n′) = 4
eπ
< 1 then R = 2|λ|−n/(n+n′) = eπ and

mod(A(γ, γ′)) 6
1

2

(
1

n
+

1

n′

)
6 1.

In the proof above, 1 is obviously not the optimal upper bound for mod(A(γ, γ′)). The
author guesses that this modulus is arbitrary small when λ is close to 0. But one can prove
that the modulus of the smallest round annulus containing A(γ, γ′) as essential subannulus
is bounded by below by a positive constant which does not depend on λ. The same happens
if the open unit disk D is replaced by any euclidean open disk centered at 0 and containing
the critical values. However we do not need a sharper estimation than (iii) in this paper (see
Lemma 2 and the proof of Lemma 3).

6.4 A separating quasicircle

The following lemma is used to define the quasicircle δ+c in the construction of Section 3 (see
the proof of Lemma 5).

Lemma 19 (Separating quasicircle). Let A(γ, γ′) be an open annulus in Ĉ bounded by a pair
of disjoint quasicircles γ, γ′, and let a be a point in A(γ, γ′). Then there exists a quasicircle
δ in A(γ, γ′) which separates a from γ ∪ γ′ such that mod(A(γ, δ)) is arbitrary small.

The main idea is merely to define a quasicircle δ close enough to the boundary γ. We
though provide an explicit proof which uses the definition of the modulus by extremal length
(see [Ahl73]).

Proof. Up to a biholomorphic change of coordinates, we may assume that

γ = {z ∈ C / |z| = 1}, γ′ = {z ∈ C / |z| = e−2πmod(A(γ,γ′))}, and a ∈]e−2πmod(A(γ,γ′)), 1[.
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Fix x to be the positive real number (1 + e−2πmod(A(γ,γ′)))/2. For every ε > 0 small enough,
define δε to be the euclidean circle centered at x and of radius 1 − x − ε. Notice that δε is
included in A(γ, γ′) and that δε separates a from γ ∪ γ′ for every ε > 0 small enough.

For every angle θ (small enough), consider the path `θ joining δε to γ of the form `θ =
{z = reiθ /Rθ 6 r 6 1} with Rθ > 0 maximal so that Rθe

iθ ∈ δε. By classical results from
euclidean geometry and trigonometry, we get

Rθ = x cos(θ) +
√

(1− x− ε)2 − x2 sin2(θ).

Since θ 7→ Rθ is an even function with a local maximum at θ = 0, it follows for every ε > 0
small enough that

θ ∈ [−
√
ε,
√
ε] =⇒ Rθ > R√ε = x cos(

√
ε) +

√
(1− x− ε)2 − x2 sin2(

√
ε)

= 1− 2− x
2(1− x)

ε+ O
ε→0

(ε2)

> 1− Cε (5)

where C is a positive constant fixed so that C > 2−x
2(1−x) .

Now recall that the modulus of A(γ, δε) is given by the extremal length of the collection
L of rectifiable paths connecting δε and γ, namely

mod(A(γ, δε)) = sup
ρ

(
inf`∈L

∫
`
ρ|dz|

)2∫
A(γ,δε)

ρ2dxdy

where the supremum is over all measurable functions ρ : A(γ, δε) → [0,+∞] such that∫
A(γ,δε)

ρ2dxdy < +∞. Let ρ be such a measurable function. For every θ (small enough),
we have

inf
`∈L

∫
`

ρ|dz| 6
∫
`θ

ρ|dz| =
∫ 1

Rθ

ρ(reiθ)dr

that leads, integrating over θ ∈ [−
√
ε,
√
ε] and applying the Cauchy-Schwarz inequality, to

2
√
ε inf
`∈L

∫
`

ρ|dz| 6

(∫ √ε
−
√
ε

∫ 1

Rθ

ρ(reiθ)2rdrdθ

)1/2(∫ √ε
−
√
ε

∫ 1

Rθ

1

r
drdθ

)1/2

6

(∫
A(γ,δε)

ρ2dxdy

)1/2
(∫ √ε
−
√
ε

log

(
1

Rθ

)
dθ

)1/2

.

Therefore it follows from the inequality (5) that(
inf`∈L

∫
`
ρ|dz|

)2∫
A(γ,δε)

ρ2dxdy
6

1

4ε

∫ √ε
−
√
ε

log

(
1

Rθ

)
dθ

6
1

4ε

∫ √ε
−
√
ε

log

(
1

1− Cε

)
dθ =

1

2
√
ε

log

(
1

1− Cε

)
.

Finally we take the supremum over all measurable functions ρ to get

mod(A(γ, δε)) 6
1

2
√
ε

log

(
1

1− Cε

)
∼
ε→0

C

2

√
ε →
ε→0

0

that concludes the proof.
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