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Résumé

La théorie des groupes de monodromie itérée a été développée par Nekrashevych [Nek05].
C’est un magnifique exemple d’application de la théorie des groupes à l’étude des sys-
tèmes dynamiques et en particulier ceux issus de l’itération d’une application holomor-
phe. Les groupes de monodromie itérée fournissent un algorithme efficace qui encode
des informations combinatoires de n’importe quel système dynamique induit par un
revêtement ramifié post-critiquement fini. Leur intérêt a été illustré par la solution
du problème de Hubbard des oreilles de lapin entortillées démontrée par Bartholdi et
Nekrashevych [BN06].

Ces notes introduisent cette théorie et s’adressent particulièrement aux lecteurs in-
téressés par les systèmes dynamiques holomorphes mais non experts en théorie des
groupes. Les objectifs sont de donner toutes les explications nécessaires à la com-
préhension de la définition principale (définition 10) et de fournir des méthodes pour
calculer efficacement dans ces groupes (voir les exemples de la section 3.3). De plus, des
liens explicites entre les groupes de monodromie itérée et les systèmes dynamiques holo-
morphes sont détaillés. En particulier, les classes d’équivalence combinatoire (section
4.1) et les accouplements de polynômes (section 4.2) sont abordés.

Abstract

The theory of iterated monodromy groups was developed by Nekrashevych [Nek05]. It
is a wonderful example of application of group theory in dynamical systems and, in
particular, in holomorphic dynamics. Iterated monodromy groups encode in a compu-
tationally efficient way combinatorial information about any dynamical system induced
by a post-critically finite branched covering. Their power was illustrated by a solution
of the Hubbard Twisted Rabbit Problem given by Bartholdi and Nekrashevych [BN06].

These notes attempt to introduce this theory for those who are familiar with holomor-
phic dynamics but not with group theory. The aims are to give all explanations needed
to understand the main definition (Definition 10) and to provide skills in computing
any iterated monodromy group efficiently (see examples in Section 3.3). Moreover some
explicit links between iterated monodromy groups and holomorphic dynamics are de-
tailed. In particular, Section 4.1 provides some facts about combinatorial equivalence
classes, and Section 4.2 deals with matings of polynomials.
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Representations of groups, automata, bimodules and virtual endomorphisms are inten-
tionally omitted in order to make this introduction more elementary. All the proofs
are mainly based on the path and homotopy lifting properties (Proposition 1) from
algebraic topology. For further reading see [Pil03b], [Nek05] and [GŠ07].

These notes come from lectures given in the Chinese Academy of Sciences in Beijing in
September 2011. The way to introduce iterated monodromy groups by using two trees
(one left to label the vertices and one right for the edges, see Section 2) was explained to
the author by Tan Lei although it implicitly appears in [Nek05] and some others works.
The author would like very much to thank Laurent Bartholdi for his fruitful discussion
and patience in explaining his works, the referee for his helpful comments and relevant
suggestions and Tan Lei for her support and encouragement.
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1 Preliminaries

1.1 Tree automorphism

A tree T is a (simple undirected) graph which is connected and has no cycles. More precisely, a
tree T = (V,E) is the data of a set of vertices V and a set of edges E which are pairs of two distinct
vertices, such that for any two distinct vertices v, v′ there is a unique path of edges from v to v′.
For every edge {v, v′}, the vertices v and v′ are said to be adjacent which is denoted v T∼ v′ (being
adjacent is a symmetric binary relation).

A tree T is said rooted if one vertex t ∈ V has been designated the root. In this case, one can
write the set of all vertices as the following partition V =

⊔
n>0 V

n where V n is the set of all the
vertices linked to the root t by a path of exactly n edges (and V 0 = {t}). Each V n is called the set
of all vertices of level n.
Definition 1

Two rooted trees T = (V,E) and T̂ = (V̂ , Ê) are said to be isomorphic if there is a bijection ϕ
from V =

⊔
n>0 V

n onto V̂ =
⊔
n>0 V̂

n satisfying the following two axioms

Level preserving: ∀n > 0, ϕ(V n) = V̂ n

Edge preserving: ∀v, v′ ∈ V, v T∼ v′ ⇒ ϕ(v)
T̂∼ ϕ(v′)

Such a bijection ϕ is called a tree isomorphism. A tree automorphism is a tree isomorphism
from a rooted tree T onto itself.

The set of all tree automorphisms of T is denoted by Aut(T ) and it is equipped with the
group structure coming from composition of maps. For every pair of tree automorphisms g, h in
Aut(T ), their composition is denoted by g.h where the map g is performed first (this notation
is more convenient for computations in Aut(T ) than h ◦ g).

Given the alphabet E = {0, 1, . . . , d− 1} of d > 2 letters, consider the following sets of words

• E0 = {∅}

• ∀n > 1, En = {words of length n with letters in E} = {ε1ε2 . . . εn / ∀k, εk ∈ E}

• E? =
⊔
n>0 En

Definition 2
The regular rooted tree Td is defined as follows

Root: the empty word ∅
Vertices: the set of words E? =

⊔
n>0 En

Edges: all the pairs {w,wε} where w is a word in E? and ε is a letter in E

The graph below shows the first three levels of the regular rooted tree T2.

000 ```````````` ^^^^^^^^^^^^
00

aaaaaaaaaaa ]]]]]]]]]]]
001 ```````````` ^^^^^^^^^^^^

0
cccccccccccc
[[[[[[[[[[[[

010 ```````````` ^^^^^^^^^^^^
01

aaaaaaaaaaa ]]]]]]]]]]]
011 ```````````` ^^^^^^^^^^^^

∅

hhhhhhhhhhhhh

VVVVVVVVVVVVV . . .
100 ```````````` ^^^^^^^^^^^^

10
aaaaaaaaaaa ]]]]]]]]]]]

101 ```````````` ^^^^^^^^^^^^
1

cccccccccccc
[[[[[[[[[[[[

110 ```````````` ^^^^^^^^^^^^
11

aaaaaaaaaaa ]]]]]]]]]]]
111 ```````````` ^^^^^^^^^^^^
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The regular rooted tree Td is an example of self-similar object. Namely for every word v ∈ E?,
the map ϕv : E? → vE?, w 7→ vw is a tree isomorphism from Td onto the regular subtree Td|v
rooted at v.

For any tree automorphism g ∈ Aut(Td) and any word v ∈ E?, notice that the following map

Rv(g) = (ϕg(v))
−1 ◦ g|vE? ◦ ϕv

is well defined from E? onto itself since the restriction g|vE? : vE? → g(v)E? is a tree isomorphism
from the regular subtree Td|v rooted at v onto the regular subtree Td|g(v) rooted at g(v). Actually
Rv(g) defines a tree automorphism of Td as it is shown in the commutative diagram below.

Td
Rv(g)

//

ϕv
��

Td

ϕg(v)
��

Td|v
g|vE?

// Td|g(v)

Definition 3

For any tree automorphism g ∈ Aut(Td) and any word v ∈ E?, the following tree automorphism

Rv(g) = (ϕg(v))
−1 ◦ g|vE? ◦ ϕv

is called the renormalization of g at v.
A subgroup G of Aut(Td) is said to be self-similar if the following condition holds

∀g ∈ G, ∀v ∈ E?, Rv(g) ∈ G

Since ϕv ◦ ϕv′ = ϕvv′ for every pair of words v, v′ in E?, it follows that Rv′ (Rv(g)) = Rvv′(g) for
every tree automorphism g ∈ Aut(Td). Therefore a quick induction shows that one only needs to
check the condition above for words v ∈ E? of length 1. That is

G is self-similar⇐⇒ ∀g ∈ G, ∀ε ∈ E , Rε(g) ∈ G

Example :
One can remark that any tree automorphism g ∈ Aut(Td) induces a permutation g|E1 of E1 = E .
Although it is not a one-to-one correspondence, one can conversely define a tree automorphism gσ ∈
Aut(Td) from a given permutation σ ∈ Sym(E) by gσ : E? → E?, ε1ε2 . . . εn 7→ σ(ε1)σ(ε2) . . . σ(εn).
Such a tree automorphism satisfies gσ(ww′) = gσ(w)gσ(w′) for every pair of words w,w′ in E?. There-
fore every renormalization of gσ is equal to gσ and any subgroup of Aut(Td) generated by such tree
automorphisms induced by some permutations of E is self-similar.

Remark that every tree automorphism g ∈ Aut(Td) satisfies

∀ε ∈ E ,∀w ∈ E?, g(εw) =
(
g|E1(ε)

)(
Rε(g)(w)

)
Consequently any tree automorphism is entirely described by its renormalizations at every vertex
in the first level together with its restriction on the first level which describes how the regular
subtrees rooted at every vertex in the first level are interchanged. That provides a convenient way
to encode tree automorphisms in order to make computations in Aut(Td).
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Definition 4

Every tree automorphism g ∈ Aut(Td) may be uniquely written as follows

g = σg〈〈g0, g1, . . . , gd−1〉〉

where

• σg = g|E1 ∈ Sym(E) is called the root permutation of g

• and for every letter ε ∈ E , gε = Rε(g) ∈ Aut(Td) is the renormalization of g at ε

This decomposition is called the wreath recursion of g.

More precisely the map g 7→ (g|E1 , (R0(g),R1(g), . . . ,Rd−1(g))) is a group isomorphism from
Aut(Td) onto the semi-direct product Sym(E)n(Aut(Td))

d called the permutational wreath product
(its binary operation is described below). Remark that a subgroup G of Aut(Td) is said self-similar
if and only if its image under this group isomorphism is a subgroup of Sym(E) nGd.

It is more convenient to think wreath recursion as in the graph below.

0
g0 // σg(0)

1
g1 // σg(1)

. . . . . .

d− 1
gd−1 // σg(d− 1)

Be aware that each arrow does not depict the map on its label. In fact, all the arrows describe
the root permutation σg whereas the labels correspond to the renormalizations of g. In practice
the arrows are often “tied” to sort out the image on the right-hand side in the same order as on
the left-hand side. The root permutation σg is then described by intertwined arrows. Furthermore
a label is often forgotten if the corresponding renormalization is the identity tree automorphism
Id ∈ Aut(Td).

This kind of graph provides an easy way to compute with wreath recursions. Namely for every
pair of tree automorphisms g, h in Aut(Td), one get

0
g0 // σg(0)

hσg(0) // σh(σg(0))

1
g1 // σg(1)

hσg(1) // σh(σg(1))

. . . . . . . . .

d− 1
gd−1 // σg(d− 1)

hσg(d−1) // σh(σg(d− 1))

Lemma 1

The wreath recursion of a composition of two tree automorphism g, h in Aut(Td) is given by

g.h = (σh ◦ σg)
〈〈
g0.hσg(0), g1.hσg(1), . . . , gd−1.hσg(d−1)

〉〉
In particular, the inverse wreath recursion of a tree automorphism g in Aut(Td) is given by

g−1 = σ−1g

〈〈
g−1
σ−1
g (0)

, g−1
σ−1
g (1)

, . . . , g−1
σ−1
g (d−1)

〉〉
5



Example - the adding machine :
Every word in E? may be thought as a d-ary integer whose digits are written from left to right. Let
g ∈ Aut(Td) be the adding machine on E?, namely the process of adding one to the left most digit
of every d-ary integer (with the convention that adding one to the word 11 . . . 1 ∈ En gives the word
00 . . . 0 ∈ En of same length). More precisely, the adding machine g is recursively defined by

∀ε ∈ E ,∀w ∈ E?, g(εw) =

{
(ε+ 1)w if ε ∈ {0, 1, . . . , d− 2}
0g(w) if ε = d− 1

Then g may be seen as the wreath recursion g = σ〈〈 Id, Id, . . . , Id, g〉〉 where σ is the cyclic permutation
such that σ(ε) = ε + 1 if ε ∈ {0, 1, . . . , d − 2} and σ(d − 1) = 0, namely σ = (0, 1, . . . , d − 1) (using
circular notation).

0

**VVVVVVVVVVVVV 0

1

**VVVVVVVVVVVVV 1

. . . 2

d− 2
**VVVVVVVVV . . .

d− 1

g

33

d− 1

Lemma 1 allows to compute easily the inverse wreath recursion g−1 = σ−1〈〈g−1, Id, . . . , Id 〉〉 since

0

**VVVVVVVVVVVVV 0

g−1

!!

0

1

**VVVVVVVVVVVVV 1

44hhhhhhhhhhhhh 1

. . . 2

44hhhhhhhhhhhhh . . .

d− 2
**VVVVVVVVV . . . d− 2

d− 1

g

33

d− 1

44hhhhhhhhh
d− 1

gives after “untying”
0 // 0

1 // 1

. . . . . .

d− 2 // d− 2

d− 1
g.g−1 = Id // d− 1

A similar computation gives gd = 〈〈g, g, . . . , g〉〉, and thus a quick induction shows that the adding
machine acts as a cyclic permutation of order dn on the n-th level of Td for every n > 1.

Example - Hanoi Towers group (due to Grigorchuk and S̆unić [GŠ07])) :
The popular Towers of Hanoi Problem deals with three rods and a given number n of disks of different
sizes which can slide onto every rod. The problem starts with all the disks in ascending order of size
on one rod making a conical shape (see Figure 1), and consists to move the entire stack to another rod
with respect to the following rules

1. Only one disk may be moved at a time.

2. Each move consists of taking the upper disk from one of the rods and sliding it onto another rod,
on top of the other disks that may already be present on that rod.

3. No disk may be placed on top of a smaller disk.
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Figure 1: The starting configuration 0000 for the Hanoi Towers with four disks

If the n disks 1, 2, . . . , n are labeled with their size (1 being the smallest and n the largest) and each
rod is labeled with one letter from the alphabet E = {0, 1, 2}, then every word w = ε1ε2 . . . εn ∈ En of
length n encodes a unique configuration of the problem in which the k-th disk is placed on the rod εk
(and then the order of disks on any rod is determined by their size). Figure 1 and Figure 2 depict the
starting configuration 0000 ∈ E4 and the configuration 1210 ∈ E4 for n = 4 disks.

Figure 2: The configuration 1210 for the Hanoi Towers with four disks

It turns out that each move between two rods is represented by either of the following wreath recursions

a = (1, 2)〈〈a, Id, Id 〉〉 b = (0, 1)〈〈 Id, Id, b〉〉 c = (0, 2)〈〈 Id, c, Id 〉〉
for a move for a move for a move

between rods 1 and 2 between rods 0 and 1 between rods 0 and 2

0
a // 0

1

))RRRRRRRRRRR 1

2

55lllllllllll
2

0

))RRRRRRRRRRR 0

1

55lllllllllll
1

2
b // 2

0

,,

0

1
c // 1

2

22

2

For instance, one can go from the starting position 0000 in Figure 1 to the position 1210 in Figure 2
by the following sequence of basic moves between two rods

b→ c→ a→ b→ a

In terms of wreath recursions, that gives

0

))RRRRRRRRRRR 0

,,

0
a // 0

))RRRRRRRRRRR 0
a // 0

1

55lllllllllll
1

c // 1

))RRRRRRRRRRR 1

55lllllllllll
1

))RRRRRRRRRRR 1

2
b // 2

22

2

55lllllllllll
2

b // 2

55lllllllllll
2

or shortly after “untying”: b.c.a.b.a = (0, 1)〈〈c.b, a, b.a〉〉

0 c.b

..\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 0

1 a

00bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb 1

2
b.a // 2
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The Hanoi Towers group H is defined to be the subgroup of Aut(T3) generated by the wreath recursions
a, b, c. It follows that the Towers of Hanoi Problem is equivalent to find an element g in the Hanoi Tower
group H = 〈a, b, c〉 (that is a sequence of basic moves between two rods) such that the image of the
starting configuration (the word 00 . . . 0 ∈ En) is a goal configuration: g(00 . . . 0) = 11 . . . 1 or 22 . . . 2.

Furthermore remark that the Hanoi Towers group H is self-similar since every renormalization of the
wreath recursions a, b, c is either a, b, c or Id.

The following lemma is often used to prove that a given tree automorphism is actually equal to
the identity tree automorphism. Indeed it may happen although its wreath recursion is not trivial.
For instance, it turns out that the wreath recursion g = 〈〈g, g, . . . , g〉〉 is actually the identity tree
automorphism Id ∈ Aut(Td) (for instance by applying lemma below).
Lemma 2

Let g1, g2, . . . , gm be m > 1 tree automorphisms in Aut(Td) such that

• every root permutation σgk = gk|E1 is the identity permutation on the the alphabet E

• and every renormalization gk,ε = Rε(gk) belongs to the subgroup of Aut(Td) generated by
g1, g2, . . . , gm

In terms of wreath recursions, g1, g2, . . . , gm are assumed to be written as follows
g1 = 〈〈g1,0, g1,1, . . . , g1,d−1〉〉
g2 = 〈〈g2,0, g2,1, . . . , g2,d−1〉〉

. . .
gm = 〈〈gm,0, gm,1, . . . , gm,d−1〉〉

where ∀k, ∀ε ∈ E , gk,ε ∈
〈
g1, g2, . . . , gm

〉

Then g1, g2, . . . , gm are all equal to the identity tree automorphism Id ∈ Aut(Td).

Proof : Let n > 2 be an integer and assume by induction that every gk acts as the identity on the set
of all words of lenght n− 1. Let w = ε1ε2 . . . εn ∈ E? be a word of length n. The image of w under
any tree automorphism gk may be written as follows

gk(w) = gk(ε1ε2 . . . εn) =
(
gk|E1(ε1)

)(
Rε1(gk)(ε2 . . . εn)

)
=
(
σgk(ε1)

)(
gk,ε1(ε2 . . . εn)

)
The first assumption gives σgk(ε1) = ε1. Furthermore it follows from the second assumption and
from the inductive hypothesis that gk,ε1(ε2 . . . εn) = ε2 . . . εn since ε2 . . . εn is a word of length n−1.
Finally gk(w) = (ε1)(ε2 . . . εn) = w and the result follows by induction (the inductive start is given
by the first assumption).

In practice, to show that a given tree automorphism g ∈ Aut(Td) is actually the identity tree
automorphism, the aim is to find together with g = g1 some tree automorphisms g2, . . . , gm which
satisfy assumptions from Lemma 2.
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1.2 Partial self-covering
Definition 5

LetM be a path connected and locally path connected topological space. A partial self-covering
ofM is a degree d > 2 covering p :M1 →M whereM1 ⊆M.

A partial self-covering can be iterated and the iterates, denoted by pn : Mn → M where
Mn = p−n(M) ⊆M, are also partial self-coverings.

. . . //M3 p
//M2 p

//M1 p
//M

Examples :
Let f be a post-critically finite branched covering map on the topological sphere S2 and denote by Pf
its post-critical set. Since Pf ⊂ f−1(Pf ), f induces the following partial self-covering.

f :M1 = S2\f−1(Pf ) −→M = S2\Pf

The same holds for post-critically finite rational maps on the Riemann sphere Ĉ or for post-critically
finite polynomials map on the complex plane C.

Recall that a partial self-covering satisfies the following path and homotopy lifting properties.
Proposition 1

(1) For every path ` inM with base point `(0) = t ∈ M and any preimage x ∈ p−1(t), there
exists a unique path Lx inM1 with base point Lx(0) = x such that p ◦Lx = ` (see the
commutative diagram below). Lx is called the p-lift of ` from x.

[0, 1]
Lx

wwooooooooooooo

`
��

M1 p
//M

(2) Furthermore if l : [0, 1] × [0, 1] → M is a homotopy of paths with l(0, .) = ` then there
exists a unique homotopy of paths Lx : [0, 1]× [0, 1]→M1 such that Lx(s, .) is the p-lift
of l(s, .) from l(s, 0) for every s ∈ [0, 1] (in particular Lx(0, .) = Lx for s = 0).

(3) Therefore for every loop γ inM with base point `(0) = t ∈M and any preimage x ∈ p−1(t),
the terminal point y = Γx(1) of the p-lift Γx of γ from x depends on γ only through its
homotopy class [γ] ∈ π1(M, t). Since y is also a preimage of t under p, it turns out that
the fundamental group π1(M, t) acts on p−1(t) by [γ]x = Γx(1).

x

Γx
�� �O
�O
�O
�O
�O p

**TTTTTTTTTTTTT

t [γ]dd
6v +k �Y
�O
�Es3h(

y p

44jjjjjjjjjjjjj

The same holds for pn :Mn →M as well, namely the fundamental group π1(M, t) acts on the set
of preimages p−n(t) by [γ]x = Γx(1) where Γx is the pn-lift of γ from x.
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2 Tree of preimages
Let p :M1 →M be a partial self-covering of degree d > 2 and t be a point inM.

2.1 A right-hand tree
Definition 6

The (right-hand) tree of preimages T (p, t) is the rooted tree defined as follows

Root: the point t

Vertices: the abstract set of preimages
⊔
n>0 p

−n(t)

Edges: all the pairs {p(x), x} where p(x) ∈ p−n(t) and x ∈ p−(n+1)(t) for some n > 0

By “abstract set”, one distinguishes a same point that belongs to two distinct levels. More pre-
cisely, some preimages corresponding to distinct levels may coincide inM1 but are distinguished
in T (p, t) (in particular every edge is well defined).

The graph below shows the first levels of a tree of preimages of a degree d = 2 partial self-
covering.

qq
p ccccccccccccccmm
p [[[[[[[[[[[[[[

ss
p hhhhhhhhhhhhhhkk

p VVVVVVVVVVVVVV

qq
p ccccccccccccccmm
p [[[[[[[[[[[[[[

t
xx

p

ppppppppppppppp
ff

p
NNNNNNNNNNNNNNN . . .

qq
p ccccccccccccccmm
p [[[[[[[[[[[[[[

ss
p hhhhhhhhhhhhhhkk

p VVVVVVVVVVVVVV

qq
p ccccccccccccccmm
p [[[[[[[[[[[[[[

Example :
Consider the degree d = 2 partial self-covering Q0 : C\{0} → C\{0}, z 7→ z2 and let t = 1 be the root.
The first two levels of the tree of preimages T (Q0, 1) are then

1 qq
Q0 cccccccccccccmm
Q0

[[[[[[[[[[[[[

1 ss
Q0

hhhhhhhhhhhhhkk

Q0
VVVVVVVVVVVV

−1 qq
Q0 ccccccccccccmm
Q0

[[[[[[[[[[[[

t = 1
xx

Q0

ppppppppppppp

ff

Q0 NNNNNNNNNNNN
. . .

i qq
Q0 cccccccccccccmm
Q0

[[[[[[[[[[[[[

−1
ss

Q0
hhhhhhhhhhhhkk

Q0
VVVVVVVVVVV

−i qq
Q0 cccccccccccccmm
Q0

[[[[[[[[[[[[[

It turns out that the tree of preimages T (p, t) of a degree d partial self-covering is isomorphic
to the regular rooted tree Td. However there is no canonical choice for a tree isomorphism between
them. Actually Definition 6 does not provide a canonical labeling of all vertices of T (p, t).
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2.2 A left-hand tree
Definition 7

A labeling choice (L) for the partial covering p : M1 → M and the base point t ∈ M is the
data of

• a numbering of the set p−1(t) = {x0, x1, . . . , xd−1}

• and for every letter ε ∈ E = {0, 1, . . . , d− 1}, a path `ε inM from t to xε

Definition 8

Let (L) be a labeling choice. Applying Proposition 1 for every path `ε, one can consider the
p-lifts of `ε from xw for every w ∈ E1 = E . Terminal points of those lifts are denoted by xεw
and are preimages of t under p2. One can iterate this process by induction. More precisely from
every preimage xw ∈ p−n(t) labelled with a word w ∈ E? of length n, there is a unique pn-lift of
`ε whose terminal point is a preimage of t under pn+1 denoted by xεw.

Then the left-hand tree of preimages T (L)(p, t) is the rooted tree defined as follows

Root: the point t = x∅

Vertices: the abstract set of labeled preimages
⊔
n>0 p

−n(t) =
⊔
n>0{xw / w ∈ En}

Edges: all the pairs {xεw, xw} where w is a word in E? and ε is a letter in E

The graph below shows the first levels of a left-hand tree of preimages of a degree d = 2 partial
self-covering (for convenience, the lifts of `ε are still denoted by `ε for every ε ∈ E).

x000
`0mm m- m- m- m- m- m- m-

`1
qq q1 q1 q1 q1 q1 q1

q1

x00

`0kk k+ k+ k+ k+ k+ k+

`1
ss s3 s3 s3

s3 s3 s3

x100
`0mm m- m- m- m- m- m- m-

`1
qq q1 q1 q1 q1 q1 q1

q1

x0

`0
hh h( h( h( h( h( h( h(

`1vv v6
v6 v6
v6 v6
v6 v6

x010
`0mm m- m- m- m- m- m- m-

`1
qq q1 q1 q1 q1 q1 q1

q1

x10

`0kk k+ k+ k+ k+ k+ k+

`1
ss s3 s3 s3

s3 s3 s3

x110
`0mm m- m- m- m- m- m- m-

`1
qq q1 q1 q1 q1 q1 q1

q1

. . . t

`0

``
` 
` 
` 
` 
` 
` 
` 
` 
` 
` 
` 

`1

~~ ~>
~>
~>
~>
~>
~>
~>
~>
~>
~>
~>

x001
`0mm m- m- m- m- m- m- m-

`1
qq q1 q1 q1 q1 q1 q1

q1

x01

`0kk k+ k+ k+ k+ k+ k+

`1
ss s3 s3 s3

s3 s3 s3

x101
`0mm m- m- m- m- m- m- m-

`1
qq q1 q1 q1 q1 q1 q1

q1

x1

`0
hh h( h( h( h( h( h( h(

`1vv v6
v6 v6
v6 v6
v6 v6

x011
`0mm m- m- m- m- m- m- m-

`1
qq q1 q1 q1 q1 q1 q1

q1

x11

`0kk k+ k+ k+ k+ k+ k+

`1
ss s3 s3 s3

s3 s3 s3

x111
`0mm m- m- m- m- m- m- m-

`1
qq q1 q1 q1 q1 q1 q1

q1

It turns out that the set of all vertices of a left-hand tree of preimages T (L)(p, t) is the same as
that one of the (right-hand) tree of preimages T (p, t). However T (L)(p, t) provides a labeling of all
vertices of T (p, t) (according to Definition 8).
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Example :
For Q0 : C\{0} → C\{0}, z 7→ z2, the preimages of t = 1 are x0 = 1 and x1 = −1. Choose the paths
`0, `1 as follows

x1 0 x0

`1

�� ` 
b"e%
g'j*l,o/r2t4w7y9|<

~>

`0
ww
(h 3s E�
O�
Y�k+v6

Lifting these paths gives (for convenience, the lifts of `0, `1 are still denoted by `0, `1 respectively)

x10

x01

`1 ,,

�U
�X
�\
"b
'g *j

`0 77
h(s3�E

�O
�Y +k 6v 0 x00

`1ll

U�
X�
\�
b"
g'j*

`0
ww
(h 3s E�
O�
Y�k+v6

x11

One can deduce the first two levels of the left-hand tree of preimages T (L)(Q0, 1)

x00 = 1
`0mm m- m- m- m- m- m-

`1
qq q1 q1 q1 q1 q1 q1

x0 = 1

`0ll l, l, l, l,

`1
rr r2 r2 r2 r2

x10 = i
`0mm m- m- m- m- m- m-

`1
qq q1 q1 q1 q1 q1 q1

. . . t = 1

`0
ii i) i) i) i) i)

`1uu u5 u5
u5 u5
u5

x01 = −1
`0mm m- m- m- m- m- m-

`1
qq q1 q1 q1 q1 q1 q1

x1 = −1

`0ll l, l, l,

`1
rr r2 r2 r2

x11 = −i
`0mm m- m- m- m- m- m-

`1
qq q1 q1 q1 q1 q1 q1

Notice that distinct choices of paths `0, `1 induce distinct left-hand trees of preimages. For instance

x1 0 x0

`1

^^
~>
|<y9w7t4r2o/l,j*g'

e%b"
` 

`0
ww
(h 3s E�
O�
Y�k+v6

gives after lifting
x11

x01

`1 22

I	
F�
B�
<|
7w 4t

`0 77
h(s3�E

�O
�Y +k 6v 0 x00

`1rr

	I
�F
�B
|<
w7t4

`0
ww
(h 3s E�
O�
Y�k+v6

x10

and thus the left-hand tree of preimages T (L)(Q0, 1) becomes

x00 = 1
`0mm m- m- m- m- m- m-

`1
qq q1 q1 q1 q1 q1 q1

x0 = 1

`0ll l, l, l, l,

`1
rr r2 r2 r2 r2

x10 = −i
`0mm m- m- m- m- m- m-

`1
qq q1 q1 q1 q1 q1 q1

. . . t = 1

`0
ii i) i) i) i) i)

`1uu u5 u5
u5 u5
u5

x01 = −1
`0mm m- m- m- m- m- m-

`1
qq q1 q1 q1 q1 q1 q1

x1 = −1

`0ll l, l, l,

`1
rr r2 r2 r2 r2

x11 = i
`0mm m- m- m- m- m- m-

`1
qq q1 q1 q1 q1 q1 q1

for this choice of `0, `1.
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Proposition 2

For every vertex xw of T (L)(p, t) labeled with a word w ∈ E?, the preimages of xw under p are

p−1(xw) = {xwε / ε ∈ E}

Proof : Since xw has exactly d preimages under p, one only needs to check that xwε is a preimage of
xw for every word w ∈ E? and every letter ε ∈ E . The main idea is that the path from xε to xwε
formed by concatenation of some lifts (following Definition 8) is a p-lift of the path from t to xw
formed by concatenation of some lifts (following Definition 8 as well). However an induction will
be used in order to avoid overloaded notations.

The result obviously holds for the empty word, that is p−1(x∅) = p−1(t) = {x0, x1, . . . , xd−1}.
Let w = ε1ε2 . . . εn ∈ E? be a word of length n > 1. From Definition 8, xw is the terminal point
of the pn−1-lift of `ε1 from xε2...εn , say L ε1

ε2...εn . Assume by induction that the result holds for the
word ε2 . . . εn of length n − 1 and let xε2...εnε be a preimage of xε2...εn for some ε ∈ E . Following
Definition 8, there is a unique pn-lift of `ε1 from xε2...εnε, say L ε1

ε2...εnε, whose terminal point is
denoted by xxε1ε2...εnε = xwε. Since L ε1

ε2...εnε is a p-lift of L ε1
ε2...εn , xwε is a preimage of xw under p.

The result follows by induction.

xw = xε1ε2...εn xε2...εn
L ε1
ε2...εnoo o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/

xwε = xε1ε2...εnε

p

OO

xε2...εnε

p

OO

L ε1
ε2...εnε

oo o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/

Example :
For Q0 : C\{0} → C\{0}, z 7→ z2 with t = 1, x0 = 1 and x1 = −1, choose the paths `0, `1 as follows

x1 0 x0

`1

�� ` 
b"e%
g'j*l,o/r2t4w7y9|<

~>

`0
ww
(h 3s E�
O�
Y�k+v6

Recall the first two levels of the left-hand and right-hand trees of preimages.

x00 = 1
`0mm m- m- m- m- m- m-

`1
qq q1 q1 q1 q1 q1 q1 1 qq

Q0 bbbbbbbbbbbbbmm
Q0

\\\\\\\\\\\\\

x0 = 1

`0ll l, l, l, l,

`1
rr r2 r2 r2 r2

1 rr
Q0 eeeeeeeeeeeeell

Q0
YYYYYYYYYYYY

x10 = i
`0mm m- m- m- m- m- m-

`1
qq q1 q1 q1 q1 q1 q1 −1 qq

Q0 bbbbbbbbbbbbmm
Q0

\\\\\\\\\\\\

. . . t = 1

`0
ii i) i) i) i) i)

`1uu u5 u5
u5 u5
u5

uu
Q0

llllllllllll
ii

Q0 RRRRRRRRRRR
. . .

x01 = −1
`0mm m- m- m- m- m- m-

`1
qq q1 q1 q1 q1 q1 q1 i qq

Q0 bbbbbbbbbbbbbmm
Q0

\\\\\\\\\\\\\

x1 = −1

`0ll l, l, l,

`1
rr r2 r2 r2

−1 rr
Q0 eeeeeeeeeeeell

Q0
YYYYYYYYYYY

x11 = −i
`0mm m- m- m- m- m- m-

`1
qq q1 q1 q1 q1 q1 q1 −i qq

Q0 bbbbbbbbbbbbbmm
Q0

\\\\\\\\\\\\\

One can deduce the induced labeling on the first levels of the tree of preimages T (Q0, 1)

x000 = 1
```````````` ^^^^^^^^^^^^

x00 = 1
bbbbbbbbb

\\\\\\\\
x001 = −1

``````````` ^^^^^^^^^^^
x0 = 1

eeeeeeeeee
ZZZZZZZZZ

x010 = i
```````````` ^^^^^^^^^^^^

x01 = −1
bbbbbbbb

\\\\\\\
x011 = −i ``````````` ^^^^^^^^^^^

t = 1

jjjjjjjjjjj

TTTTTTTTTTT . . .
x100 = eiπ/4

`````````` ^^^^^^^^^^
x10 = i

bbbbbbb
\\\\\\
x101 = e−3iπ/4

````````` ^^^^^^^^^
x1 = −1

eeeeeeeee

ZZZZZZZZ
x101 = e3iπ/4

`````````` ^^^^^^^^^^
x11 = −i bbbbbb

\\\\\\
x111 = e−iπ/4

`````````` ^^^^^^^^^^
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Proposition 3

Label all vertices of the tree of preimages T (p, t) like those of T (L)(p, t) for some given labeling
choice (L). Then the following holds
- The edges of T (p, t) are all the pairs {xw, xwε} where w is a word in E? and ε is a letter in E

(compare with the edges of T (L)(p, t))
- The map ϕ(L) : xw 7→ w is a tree isomorphism from T (p, t) onto the regular rooted tree Td

Proof : The first point and the edge preserving axiom for ϕ(L) follow from Proposition 2. The level
preserving axiom comes from Definition 8.

3 Iterated monodromy group
Let p :M1 →M be a partial self-covering of degree d > 2 and t be a point inM.

3.1 Monodromy action

From Proposition 1, the fundamental group π1(M, t) acts on p−n(t) for every n > 0, that is on the
set of vertices of level n in the tree of preimages T (p, t).
Definition 9

The action of π1(M, t) on the set of all vertices in the tree of preimages T (p, t) is called the
monodromy action. It may be seen as the following group homomorphism.

Φ : π1(M, t)→ Sym

(⊔
n>0

p−n(t)

)
, [γ] 7→

(
Φ[γ] : x 7→ [γ]x

)
Furthermore for any labeling choice (L), the tree isomorphism ϕ(L) from Proposition 3

induces a monodromy action on the set of all words E? defined as follows

Φ(L) : π1(M, t)→ Sym (E?) , [γ] 7→
(

Φ
(L)
[γ] : w 7→ [γ]w

)
where x[γ]w = [γ]xw

More precisely the monodromy action induced by a given labeling choice (L) is defined as follows

∀[γ] ∈ π1(M, t), ∀w ∈ E?, Φ
(L)
[γ] (w) = [γ]w = ϕ(L)

(
[γ]xw

)
=
(
ϕ(L) ◦ Φ[γ] ◦

(
ϕ(L)

)−1)
(w)

In particular the monodromy action induced by another labeling choice (L′) is conjugate to that
one coming from (L) by the map ϕ(L),(L′) = ϕ(L) ◦

(
ϕ(L′)

)−1 ∈ Aut(Td) in the following way

∀[γ] ∈ π1(M, t), Φ
(L′)
[γ] =

(
ϕ(L),(L′)

)−1
◦ Φ

(L)
[γ] ◦

(
ϕ(L),(L′)

)
As a consequence, the monodromy action on E? is well defined up to conjugation by a tree auto-
morphism of the form ϕ(L),(L′) for any pair of labeling choices (L) and (L′).

In practice, it is more convenient to use Φ(L) than Φ for a “relevant” labeling choice (L) in order
to compute the monodromy action of a partial self-covering (since (L) provides a labeling of every
vertex in the tree of preimages).

As Theorem 1 will show, the monodromy action actually acts by tree automorphisms, namely
Φ[γ] ∈ Aut(T (p, t)) for every homotopy class [γ] ∈ π1(M, t) (and therefore Φ

(L)
[γ] ∈ Aut(Td) for any

labeling choice (L)).
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Example :
For Q0 : C\{0} → C\{0}, z 7→ z2 with t = 1, x0 = 1 and x1 = −1, choose the paths `0, `1 as follows

x1 0 x0

`1

�� ` 
b"e%
g'j*l,o/r2t4w7y9|<

~>

`0
ww
(h 3s E�
O�
Y�k+v6

The fundamental group π1(C\{0}, 1) may be described as the infinite cyclic group generated by the
homotopy class [γ] coming from the following loop

0 t

FE _� _�
_�
_�@G

γ
�?
�?
�?

AB�_�_�_
???�
?�
?�
?�

where γ surrounds the point 0 in a counterclockwise motion. Lifting this loop gives

x1

Γ1

77'g )i *j +k ,l .n /o 0p 2r 3s 4t
5u 7w

0 x0

Γ0

ww g'i)j*
k+l,n.o/p0r2s3t4u5w7

One can deduce the monodromy action of [γ] on the first level Q−10 (t), that is [γ]x0 = x1 and [γ]x1 = x0.
Equivalently the action on E1 = {0, 1} is given by [γ]0 = 1 and [γ]1 = 0. Lifting the loop γ by
Q2

0 : z 7→ z4 gives
x10Γ10





t4w7
|<
�B
�F
	I

x01

Γ01 ,,

�U
�X
�\
"b
'g *j

0 x00

Γ00
ll

U�
X�
\�
b"
g'j*

x11 Γ11

JJ

4t 7w
<|
B�
F�
I	

One can deduce the action of [γ] on the second level Q−20 (t) or equivalently on E2 = {00, 10, 01, 11},
that is [γ]00 = 10, [γ]01 = 01, [γ]01 = 11 and [γ]11 = 00.

More generally, it turns out that the pn-lifts of any loop γ are needed to compute the monodromy
action of [γ] on the n-th level. However the following lemma gives a recursive way to compute the
monodromy action that only uses the p-lifts of γ.
Lemma 3

Let [γ] be a homotopy class in π1(M, t) and w be a word in E?. For every letter ε ∈ E , denote
by Γε the p-lift of γ from xε. Then, for any labeling choice (L),

[γ]εw =
(

[γ]ε
)( [

`ε.Γε.`
−1
[γ]ε

]
w
)

The following graph depicts the concatenation of paths `ε.Γε.`−1[γ]ε.

xε

Γε
��
�O
�O
�O
�O

t [γ]dd
6v +k �Y
�O
�Es3h(

`ε
kk k+ k+ k+ k+ k+ k+ k+ k+ k+ k+ k+

`[γ]ε
ss s3 s3 s3

s3 s3 s3
s3 s3

[γ]xε = x[γ]ε

In particular, it is a loop with base point t and the homotopy class
[
`ε.Γε.`

−1
[γ]ε

]
is well defined

in π1(M, t).
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Proof : Let δ be the loop `ε.Γε.`−1[γ]ε. Consider the pn-lift of δ from xw and denote by xv its terminal

point, that is v = [δ]w. This lift is exactly the concatenation of three paths L ε
w.Γεw.

(
L

[γ]ε
v

)−1
where

• L ε
w is the pn-lift of `ε from xw (whose terminal point is xεw from Definition 8)

• Γεw is the pn+1-lift of γ from xεw (whose terminal point is [γ]xεw = x[γ]εw)

• L
[γ]ε
v is the pn-lift of `[γ]ε from xv (whose terminal point is x([γ]ε)v from Definition 8)

xεw

Γεw

��
�O
�O
�O
�O
�O
�O
�O

xw
L ε
woo o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/

x[γ]εw = x([γ]ε)v xv
L

[γ]ε
v

oo o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/

In particular Γεw and L
[γ]ε
v have the same terminal point, and thus [γ]εw = ([γ]ε)v = ([γ]ε)([δ]w).

Example :
Go further with the partial self-covering Q0 : C\{0} → C\{0}, z 7→ z2 using the same labeling choice
as before. Recall that the Q0-lifts Γ0,Γ1 of γ are

x1

Γ1

77'g )i *j +k ,l .n /o 0p 2r 3s 4t
5u 7w

0 x0

Γ0

ww g'i)j*
k+l,n.o/p0r2s3t4u5w7

`1

�� Y�
Y�Z�
]�
` 
d$g'
k+o/s3w7z:

~>
�A
�D�E
�E

`0
ww
(h 3s E�
O�
Y�k+v6

The loop `0.Γ0.`
−1
[γ]0 = `0.Γ0.`

−1
1 is homotopic to the constant loop at base point t and the loop

`1.Γ1.`
−1
[γ]1 = `1.Γ1.`

−1
0 is homotopic to γ. It follows from Lemma 3 that

∀w ∈ E?, [γ]0w = 1w and [γ]1w = 0 ([γ]w)

Therefore the tree automorphism g = (w 7→ [γ]w) ∈ Aut(T2) may be described as the wreath recursion
g = (0, 1)〈〈 Id, g〉〉 which is the adding machine on T2, namely the process of adding one to a binary
integer (see Section 1.1). One can depict this monodromy action on every vertex of the tree of preimages
T (Q0, 1) as follows

x000
``````````````````` ^^^^^^^^^^^^^^^^^^^

%%

z:z:
}=
�@
�D
�H
�K
�O
�S
�W
�Z
�^
!a
$d %e

x00 = 1
bbbbbbbbbbbbbbb
\\\\\\\\\\\\\\\

��

�@
�C
�E
�H

J

M
�O
�R
�T
�W
�Y
�\
�^

x001
``````````````````` ^^^^^^^^^^^^^^^^^^^

%%

z:z:
}=
�@
�D
�H
�K
�O
�S
�W
�Z
�^
!a
$d %e

x0 = 1

eeeeeeeeeeeeee

YYYYYYYYYYYYYY

��

�H
	I

J
�K

M
�N
�O
�P
�R
�S
�T
�U
�W

x010
``````````````````` ^^^^^^^^^^^^^^^^^^^

%%

z:z:
}=
�@
�D
�H
�K
�O
�S
�W
�Z
�^
!a
$d %e

x01 = −1
bbbbbbbbbbbbbbb
\\\\\\\\\\\\\\\

��

�@
�C
�E
�H

J

M
�O
�R
�T
�W
�Y
�\
�^

x011
``````````````````` ^^^^^^^^^^^^^^^^^^^

%%

z:z:
}=
�@
�D
�H
�K
�O
�S
�W
�Z
�^
!a
$d %e

t = 1

jjjjjjjjjjjjjjjj

TTTTTTTTTTTTTTTT . . .
x100

``````````````````` ^^^^^^^^^^^^^^^^^^^

]]

E�
J

O�
T�
Y�

x10 = i
bbbbbbbbbbbbbbbb
\\\\\\\\\\\\\\\\

[[

E�
J

O�
T�
Y�

x101
``````````````````` ^^^^^^^^^^^^^^^^^^^

]]

E�
J

O�
T�
Y�

x1 = −1

eeeeeeeeeeeeee

YYYYYYYYYYYYY

WW

H�
I	
J

K�
M

N�
O�
P�
R�
S�
T�
U�
W�

x110
``````````````````` ^^^^^^^^^^^^^^^^^^^

cc

<| =}
?� @�
C�
F�
I	
L�
O�
R�
U�
X�
[�
^�_�
a!b"

x11 = −i
bbbbbbbbbbbbbbb
\\\\\\\\\\\\\\\

[[

D� E�
G�
H�
J

L�
M

O�
Q�
R�
T�
V�
W�
Y�Z�

x111
``````````````````` ^^^^^^^^^^^^^^^^^^^

cc

<|
=}
>~
?�
A�
B�
D�
E�
F�
H�
I	
K�
L�
O�
R�
S�
U�
V�
X�
Y�
Z�
\�
]�
_�
` 
a!
b"

Remark that the monodromy action of [γ] actually acts by tree automorphism on T (Q0, 1). In particular
it is edge preserving (whatever the labeling of all vertices) as it is shown in the graph above.
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The previous remark can be generalized for any monodromy action.
Theorem 1

The monodromy action acts by tree automorphisms on the tree of preimages T (p, t). Equiva-
lently speaking, the monodromy action may be seen as the following group homomorphism.

Φ : π1(M, t)→ Aut (T (p, t)) , [γ] 7→
(

Φ[γ] : x 7→ [γ]x
)

This result motivates the introduction of the right-hand tree of preimages T (p, t). Indeed the
monodromy action is not necessarily edge preserving on the left-hand tree of preimages T (L)(p, t).
Proof : Let [γ] be a homotopy class in π1(M, t). If follows from Definition 9 and Proposition 1 that

Φ[γ] is level preserving. So one only needs to check that Φ[γ] is furthermore edge preserving.

Let {p(x), x} be an edge of T (p, t) where x ∈ p−(n+1)(t) for some n > 0. Let Γp(x) be the pn-lift
of γ from p(x) (whose terminal point is [γ]p(x)) and Γx be the pn+1-lift of γ from x (whose terminal
point is [γ]x). Since Γx is a p-lift of Γp(x), it follows that p([γ]x) = [γ]p(x) and thus {[γ]p(x), [γ]x},
which is also equal to {Φ[γ](p(x)),Φ[γ](x)}, is an edge of T (p, t).

p(x)

Γp(x)

��
�O
�O
�O
�O
�O
�O
�O

x
poo

Γx

�� �O
�O
�O
�O
�O
�O
�O
�O

[γ]p(x) = p([γ]x) [γ]xp
oo

The monodromy action may also be seen as a group homomorphism from π1(M, t) into Aut(Td).
In this case, its image is well defined for a given labeling choice (L) or up to conjugation by a tree
automorphism of the form ϕ(L),(L′) = ϕ(L) ◦

(
ϕ(L′)

)−1 for any pair of labeling choices (L) and (L′).
However these group homomorphisms are in general not injective or equivalently, in terms of

group action, the monodromy action is in general not faithful.

3.2 Definition
Definition 10

The iterated monodromy group of the degree d > 2 partial self-covering p : M1 → M with
base point t ∈M is defined to be

IMG(p, t) = π1(M, t)/Ker(Φ) where Ker(Φ) =
{

[γ] ∈ π1(M, t) / ∀x ∈
⊔
n>0

p−n(t), [γ]x = x
}

Equivalently speaking, it may be seen as

• the image of the monodromy action in Aut(T (p, t)) which induces a faithful action by tree
automorphisms on the tree of preimages T (p, t)

• the following subgroup of Aut(Td)

IMG(p, t) =
{

(w 7→ [γ]w) ∈ Aut(Td) / [γ] ∈ π1(M, t)
}

which is defined for a given labeling choice (L)
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Recall that, up to group isomorphism, the fundamental group π1(M, t) does not depend on the
choice of base point t ∈ M. The same obviously holds, up to tree isomorphism, for the tree of
preimages T (p, t) as well. Consequently, up to group isomorphism, the iterated monodromy group
IMG(p, t) only depends on the partial self-covering p :M1 →M.

The definition of the iterated monodromy group IMG(p, t) as a subgroup of Aut(Td) depends on
a labeling choice (L). Recall that another labeling choice (L′) induces a monodromy action on Td
which is conjugate to that one coming from (L) by the map ϕ(L),(L′) = ϕ(L) ◦

(
ϕ(L′)

)−1 ∈ Aut(Td).
Therefore the iterated monodromy group IMG(p, t) is well defined as subgroup of Aut(Td) up to
conjugation by a tree automorphism of the form ϕ(L),(L′) for any pair of labeling choices (L) and
(L′). In particular, it is also well defined up to conjugation by a tree automorphism of Td (or
equivalently up to post-composition with an inner automorphism of Aut(Td)), but there is then a
loss of information since Aut(Td) is much bigger than its subgroup of all maps of the form ϕ(L),(L′)

for any pair of labeling choices (L) and (L′).

Example :
Back to the partial self-covering Q0 : C\{0} → C\{0}, z 7→ z2. Recall that π1(C\{0}, 1) is the infinite
cyclic group generated by [γ] and that [γ] acts as the adding machine g = (0, 1)〈〈 Id, g〉〉. In particular
[γ] acts as a cyclic permutation of order 2n on the set of all vertices of level n, and thus the kernel
of the monodromy action on the n-th level is Kn = 〈[γ2n ]〉. It follows that Ker(Φ) =

⋂
n>0Kn only

contains the identity element and the monodromy action is faithful. Finally IMG(Q0, 1) is isomorphic
to π1(C\{0}, 1), that is isomorphic to Z.

The following result deals with one of the many remarkable properties satisfied by iterated
monodromy groups.
Theorem 2 (Nekrashevych)

The iterated monodromy group IMG(p, t) seen as a subgroup of Aut(Td) (for any given labeling
choice (L)) is a self-similar group.

Proof : Recall that a subgroup of Aut(Td) is said to be self-similar if it is invariant under any renor-
malization (see Definition 3). Furthermore a quick induction shows that one only needs to check
that it is invariant under renormalizations at every vertex in the first level.

So let [γ] be a homotopy class in π1(M, t) seen as a tree automorphism (w 7→ [γ]w) ∈ Aut(Td)
and ε be a letter in E . For every word w ∈ E?, Lemma 3 gives [γ]εw = ([γ]ε)([`ε.Γε.`

−1
[γ]ε]w) with

[`ε.Γε.`
−1
[γ]ε] ∈ π1(M, t) and therefore

Rε
(
w 7→ [γ]w

)
=
(
w 7→ [`ε.Γε.`

−1
[γ]ε]w

)
belongs to the iterated monodromy group IMG(p, t) making it a self-similar group.

For further reading about self-similar groups, see [Nek05] and [GŠ07].
Abusing notation, every tree automorphism (w 7→ [γ]w) ∈ Aut(Td) induced by some homotopy

class [γ] ∈ π1(M, t) is often denoted simply by γ (instead of Φ
(L)
[γ] ) for convenience. As it is shown

in the proof above, Lemma 3 allows to compute efficiently the wreath recursion of every such tree
automorphism (see Section 1.1).
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3.3 Examples

Basilica group

Consider the quadratic polynomial Q−1 : z 7→ z2 − 1 whose Julia set, called Basilica, is shown in
Figure 3. Its critical point 0 is periodic of period 2.

−1

1:1

<< 0

2:1
{{

That induces a degree 2 partial self-covering Q−1 : C\{−1, 0, 1} → C\{−1, 0}.

Figure 3: The Basilica and two generators of π1(C\{−1, 0}, t)

Choose the fixed point t = 1−
√
5

2
as base point. The fundamental group π1(C\{−1, 0}, t) may be

described as the free group generated by two homotopy classes [a], [b] where the loop a surrounds
the post-critical point −1 and the loop b the post-critical point 0 both in a counterclockwise motion
(see Figure 3).

Figure 4: The labeling choice `0, `1 and the lifts of a, b

Let x0 = t, x1 = −t be the preimages of t and choose two paths `0, `1 from t to x0, x1 as it is
shown in Figure 4. This picture also depicts the lifts of the loops a and b. In particular, one can
deduce the monodromy action of [a] and [b] on the first level.{

[a]0 = 1
[a]1 = 0

and
{

[b]0 = 0
[b]1 = 1
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Furthermore {
[`0.A0.`

−1
1 ] = [b]

[`1.A1.`
−1
0 ] = [1t]

and
{

[`0.B0.`
−1
0 ] = [a]

[`1.B1.`
−1
1 ] = [1t]

where [1t] is the homotopy class of the constant loop at base point t (that is the identity element
of the fundamental group π1(C\{−1, 0}, t)). It follows from Lemma 3 that

∀w ∈ E?,
{

[a]0w = 1([b]w)
[a]1w = 0w

and
{

[b]0w = 0([a]w)
[b]1w = 1w

Therefore the iterated monodromy group of Q−1 seen as a subgroup of Aut(T2) is generated by
the following wreath recursions

IMG(Q−1, t) =
〈
a = (0, 1)〈〈b, Id 〉〉, b = 〈〈a, Id 〉〉

〉
This group is called the Basilica group. It is not isomorphic to the free group on a set of two
elements. Indeed it follows from Lemma 1 that

a = (0, 1)〈〈b, Id 〉〉 b = 〈〈a, Id 〉〉 a−1 = (0, 1)〈〈 Id, b−1〉〉 b−1 = 〈〈a−1, Id 〉〉

0 b

))RRRRRRRRRRR 0

1

55lllllllllll
1

0
a // 0

1 // 1

0

))RRRRRRRRRRR 0

1 b−1

55lllllllllll
1

0
a−1 // 0

1 // 1

And thus the monodromy action of [b−1.a−1.b−1.a.b.a−1.b.a] is given by the following wreath recur-
sion

0
a−1 // 0

))RRRRRRRRRRR 0
a−1 // 0 b

))RRRRRRRRRRR 0
a // 0

))RRRRRRRRRRR 0
a // 0 b

))RRRRRRRRRRR 0

1 // 1 b−1

55lllllllllll
1 // 1

55lllllllllll
1 // 1 b−1

55lllllllllll
1 // 1

55lllllllllll
1

that is after “untying” (see Lemma 1)

0
a−1.a = Id // 0

1
b−1.a−1.b.b−1.a.b = Id // 1

Therefore [b−1.a−1.b−1.a.b.a−1.b.a] ∈ Ker(Φ). In particular for every pair of generators of IMG(Q−1, t),
the relation b−1.a−1.b−1.a.b.a−1.b.a = Id implies a relation between these generators. It follows that
IMG(Q−1, t) is not isomorphic to the free group on a set of two elements.

Notice that the monodromy action of Q−1 : C\{−1, 0, 1} → C\{−1, 0} is not faithful. More
precisely this group was studied in [GŻ02] where it was in particular proved that

Ker(Φ) =
〈

[b−p.a−p.b−p.ap.bp.a−p.bp.ap], [a−2p.b−p.a−2p.bp.a2p.b−p.a2p.bp] / p = 2j, j > 0
〉
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Chebyshev polynomials and infinite dihedral group

Consider the degree d > 2 Chebyshev polynomials defined by Cd : z 7→ cos(d arccos(z)) or equiva-
lently by the following recursive formula

∀z ∈ C, C0(z) = 1, C1(z) = z and Cd(z) = 2zCd−1(z)− Cd−2(z)

Its Julia set is the real segment [−2, 2]. For every k ∈ {1, 2, . . . , d− 1}, the point ck = cos(πk
d

) is a
simple critical point and is mapped to Cd(ck) = (−1)k. Moreover Cd(1) = 1, Cd(−1) = (−1)d, and
thus the post-critical set is {−1, 1}. It follows that every Chebyshev polynomial induces a partial
self-covering Cd : C\C−1d ({−1, 1}) −→ C\{−1, 1}.

Choose t = 0 as base point. The fundamental group π1(C\{−1, 1}, t) may be described as the
free group generated by two homotopy classes [a], [b] where the loop a surrounds the post-critical
point −1 and the loop b the post-critical point 1 both in a counterclockwise motion (see the graph
below).

−1 t
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a
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CD
?�
?�
?�
?�

FE b_� _�
_�

�� �?
�?
�?
�?

1

The preimages of t = 0 are xε = cos( π
2d

+ πε
d

) where the letter ε belongs to the alphabet
E = {0, 1, . . . , d− 1}. For every letter ε ∈ E , let `ε be the straight path from t to xε. Remark that
every real segment [xk+1, xk] contains only one critical point, namely ck+1, and the restriction of
Cd on this segment is a double covering map onto [−1, 0] for k even and onto [0, 1] for k odd.

Each of the loops a and b has exactly d lifts. The pattern of these lifts is depicted in the
following graph

. . . x4
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and the last lift on left, which is a loop surrounding −1, is a lift of b for d even and of a for d odd.
It follows from Lemma 3 that

∀w ∈ E?,


[a]0w = 1w
[a]1w = 0w
[a]2w = 3w
[a]3w = 2w
. . .

and



[b]0w = 0([b]w)
[b]1w = 2w
[b]2w = 1w
[b]3w = 4w
[b]4w = 3w
. . .

with
{

[b](d− 1)w = (d− 1)([a]w) if d is even
[a](d− 1)w = (d− 1)([a]w) if d is odd

That leads to the following wreath recursions{
a = σa〈〈 Id, Id, . . . , Id, Id 〉〉 and b = σb〈〈b, Id, . . . , Id, a〉〉 if d is even
a = σa〈〈 Id, Id, . . . , Id, a〉〉 and b = σb〈〈b, Id, . . . , Id, Id 〉〉 if d is odd

where σa = (0, 1)(2, 3) . . . and σb = (1, 2)(3, 4) . . .
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Using Lemma 1, one may compute the wreath recursions a2 and b2.{
a2 = 〈〈 Id, Id, . . . , Id, Id 〉〉 and b2 = 〈〈b2, Id, . . . , Id, a2〉〉 if d is even
a2 = 〈〈 Id, Id, . . . , Id, a2〉〉 and b = 〈〈b2, Id, . . . , Id, Id 〉〉 if d is odd

Applying Lemma 2, it follows that a2 = b2 = Id, or equivalently, in terms of monodromy action,〈
[a2], [b2]

〉
⊂ Ker(Φ) ⊂

〈
[a], [b]

〉
= π1(C\{−1, 1}, t)

Remark that if Ker(Φ) is strictly larger than 〈[a2], [b2]〉, then Ker(Φ) must contain at least one
element of the form either [(a.b)j] or [(b.a)j] with j > 1 or of the form either [a.(b.a)j] or [b.(a.b)j]
with j > 0. One will prove that is not the case.

The wreath recursion a.b is given by (using Lemma 1){
a.b = σa.b〈〈 Id, b, Id, . . . , Id, a, Id 〉〉 if d is even
a.b = σa.b〈〈 Id, b, Id, . . . , Id, Id, a〉〉 if d is odd

where (using circular notation)

σa.b =
(

(1, 2)(3, 4) . . .
)
◦
(

(0, 1)(2, 3) . . .
)

=

{
(0, 2, 4, . . . , d− 4, d− 2, d− 1, d− 3, . . . , 5, 3, 1) if d is even
(0, 2, 4, . . . , d− 3, d− 1, d− 2, d− 4, . . . , 5, 3, 1) if d is odd

In particular [a.b] acts as a cyclic permutation of order d on the first level of the regular rooted tree
Td (since σa.b is of order d). Moreover, using Lemma 1 again, it appears that

(a.b)d = 〈〈a.b, a.b, a.b, . . . , b.a, b.a, b.a〉〉

Recall that (b.a) = (a.b)−1 since a2 = b2 = Id, and thus [b.a] also acts as a cyclic permutation of
order d on the first level. Therefore a quick induction implies that [a.b] and [b.a] act as a cyclic
permutation of order dn on the n-th level of Td. It follows that none of the elements of the form
either [(a.b)j] or [(b.a)j] with j > 1 acts as the identity tree automorphism. The same holds as well
for the elements of the form either [a.(b.a)j] or [b.(a.b)j] with j > 0 since a and b are of order 2 in
Aut(Td). Finally

Ker(Φ) =
〈

[a2], [b2]
〉

and IMG(Cd, t) = π1(C\{−1, 1}, t)/Ker(Φ) =
〈

[a], [b]
〉
/
〈

[a2], [b2]
〉

This group is called the infinite dihedral group. It is isomorphic to the isometry group of Z (for
instance the permutations α 7→ −α and α 7→ 1− α play the same role as a and b).
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The quadratic rational map z 7→
(
z−1
z+1

)2
Consider the quadratic rational map R : z 7→

(
z−1
z+1

)2 whose Julia set is shown in Figure 5. The
critical points are −1 and 1. Since R(−1) = ∞, R2(−1) = 1 and R(1) = 0, R2(1) = 1, the
post-critical set is {0, 1,∞}.

−1

2:1 --

0

1:1

<< 1

2:1
||

∞ 1:1

LL

That induces a degree 2 partial self-covering R : C\{−1, 0, 1} −→ C\{0, 1}.

Figure 5: The Julia set of R : z 7→
(
z−1
z+1

)2 and two generators of π1(C\{0, 1}, t)

Choose the real fixed point t ≈ 0.296 as base point. The fundamental group π1(C\{0, 1}, t) may
be described as the free group generated by two homotopy classes [a], [b] where the loop a surrounds
the post-critical point 0 and the loop b the post-critical point 1 both in a counterclockwise motion
(see Figure 5).

Let x0 = t, x1 = t−1 ≈ 3.383 be the preimages of t and choose two paths `0, `1 from t to x0, x1
as it is shown in Figure 6. This picture also depicts the lifts of the loops a and b. By using Lemma
3, one can compute the monodromy action of [a] and [b].

∀w ∈ E?,
{

[a]0w = 1([b]w)
[a]1w = 0w

and
{

[b]0w = 0([a]w)
[b]1w = 1([b−1.a−1]w)

Therefore the iterated monodromy group of R seen as a subgroup of Aut(T2) is generated by
the following wreath recursions

IMG(R, t) =
〈
a = (0, 1)〈〈b, Id 〉〉, b = 〈〈a, b−1.a−1〉〉

〉
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Figure 6: The labeling choice `0, `1 and the lifts of a, b

Notice that these wreath recursions are not convenient to compute with since two generators
occur in the renormalization R1(b) = b−1.a−1 and only one renormalization is the identity tree
automorphism. However one may find a nicer pair of generators of IMG(R, t) by taking another
pair of generators of π1(C\{0, 1}, t) and another labeling choice.

Indeed consider the tree automorphism g in Aut(T2) whose wreath recursion is given by

g = 〈〈g.a, g〉〉

This tree automorphism is well defined by induction on the successive levels of the regular rooted
tree T2. Now consider the following wreath recursions

a′ = g.(a.b).g−1 =
0

g.a // 0 b

%%LLLLLLLLLLLL 0
a // 0

a−1.g−1 // 0

1
g // 1

99rrrrrrrrrrrr
1
b−1.a−1 // 1

g−1 // 1

=
0 g.a.b.b−1.a−1.g−1 = Id

--ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ 0

1 g.a.a−1.g−1 = Id

11ddddddddddddddddddddddddddddddddddddddddddddddd 1

= (0, 1)〈〈 Id, Id 〉〉

b′ = g.a.g−1 =
0

g.a // 0 b

%%LLLLLLLLLLLL 0
a−1.g−1 // 0

1
g // 1

99rrrrrrrrrrrr
1

g−1 // 1

=
0 g.a.b.g−1 = a′

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY 0

1 g.a−1.g−1 = b′−1

22eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 1

= (0, 1)〈〈a′, b′−1〉〉
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Remark that 〈a, b〉 is obviously generated by a.b and a. Consequently 〈a, b〉 and 〈a′, b′〉 =
g.〈a.b, a〉.g−1 = g.〈a, b〉.g−1 are conjugate subgroups in Aut(T2)

Recall that the iterated monodromy group IMG(R, t) seen as a subgroup of Aut(T2) is defined
for a given labeling choice. In particular the subgroup 〈a, b〉 was obtained for the labeling choice,
say (L), depicted in Figure 6. With similar computations, one can show that the labeling choice (L′)
depicted in Figure 7 gives the subgroup 〈a′, b′〉. In other words, the tree automorphism g ∈ Aut(T2)

corresponds to the map ϕ(L),(L′) = ϕ(L) ◦
(
ϕ(L′)

)−1 ∈ Aut(T2) which describes the change of labeling
choices from (L) to (L′) (see Proposition 3 and Definition 9).

Figure 7: The labeling choice `′0, `′1 and two generators [a′] = [a.b], [b′] = [a] of π1(C\{0, 1}, t)

It follows from the labeling choice (L′) that

IMG(R, t) =
〈
a′ = (0, 1)〈〈 Id, Id 〉〉, b′ = (0, 1)〈〈a′, b′−1〉〉

〉
for which the wreath recursions of generators are nicer than for 〈a, b〉. Indeed, that immediately
shows a′2 = Id, and thus IMG(R, t) is not isomorphic to the free group on a set of two elements, or
equivalently the monodromy action of R : C\{−1, 0, 1} → C\{0, 1} is not faithful.
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Sierpinski gasket and towers of Hanoi (due to Grigorchuk and S̆unić [GŠ07])

Consider the cubic rational map H : z 7→ z2− 16
27z

whose Julia set is a Sierpinski gasket (see Figure
8). The critical points are ∞ and ck = −2

3
ζk where k ∈ {0, 1, 2} and ζ = −1

2
+
√
3
2

(a third root of
unity). Since H(∞) =∞ and H(ck) = 4

3
ζ2k, H2(ck) = 4

3
ζk, the post-critical set is

{
4
3
, 4
3
ζ, 4

3
ζ2,∞

}
.

4
3
ζ

1:1

!!

−2
3
ζ2

2:1

ccGGGGGGG

∞2:1 88 −2
3

2:1 // 4
3

1:1
yy

−2
3
ζ

2:1

{{wwwwww

4
3
ζ2

1:1

FF

That induces a degree 3 partial self-covering H : C\H−1
({

4
3
, 4
3
ζ, 4

3
ζ2
})
−→ C\

{
4
3
, 4
3
ζ, 4

3
ζ2
}
.

Figure 8: A Sierpinski gasket and three generators of π1(C\{43 ,
4
3
ζ, 4

3
ζ2}, t)

Choose t = 0 as base point. The fundamental group π1(C\{43 ,
4
3
ζ, 4

3
ζ2}, t) may be described as

the free group generated by three homotopy classes [a], [b], [c] where the loops a, b, c surround the
post-critical points 4

3
, 4
3
ζ, 4

3
ζ2 respectively in a counterclockwise motion (see Figure 8).

The preimages of t are xε = 24/3

3
ζε where the letter ε belongs to the alphabet E = {0, 1, 2}. For

every letter ε ∈ E , let `ε be the straight path (in C) from t to xε as it is shown in Figure 9. This
picture also depicts the lifts of the loops a, b, c.
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Figure 9: The labeling choice `0, `1, `2 and the lifts of a, b, c

One can deduce the monodromy action of [a], [b], [c] on the first level.
[a]0 = 0
[a]1 = 2
[a]2 = 1

and


[b]0 = 1
[b]1 = 0
[b]2 = 2

and


[c]0 = 2
[c]1 = 1
[c]2 = 0

Furthermore
[`0.A0.`

−1
0 ] = [a]

[`1.A1.`
−1
2 ] = [1t]

[`2.A2.`
−1
1 ] = [1t]

and


[`0.B0.`

−1
1 ] = [1t]

[`1.B1.`
−1
0 ] = [1t]

[`2.B2.`
−1
2 ] = [c]

and


[`0.C0.`

−1
2 ] = [1t]

[`1.C1.c
−1
1 ] = [b]

[`2.C2.`
−1
0 ] = [1t]

where [1t] is the homotopy class of the constant loop at base point t (that is the identity element
of the fundamental group π1(C\{43 ,

4
3
ζ, 4

3
ζ2}, t)). It follows from Lemma 3 that

∀w ∈ E?,


[a]0w = 0([a]w)
[a]1w = 2w
[a]2w = 1w

and


[b]0w = 1w
[b]1w = 0w
[b]2w = 2([c]w)

and


[c]0w = 2w
[c]1w = 1([b]w)
[c]2w = 0w

Therefore the iterated monodromy group of H seen as a subgroup of Aut(T3) is generated by
the following wreath recursions

IMG(H, t) =
〈
a = (1, 2)〈〈a, Id, Id 〉〉, b = (0, 1)〈〈 Id, Id, c〉〉, c = (0, 2)〈〈 Id, b, Id 〉〉

〉
IMG(H, t) is not isomorphic to the free group on a set of three elements (for instance one can

prove that a2 = b2 = c2 = Id by using Lemma 1 and Lemma 2) or equivalently the monodromy
action of H : C\H−1

({
4
3
, 4
3
ζ, 4

3
ζ2
})
→ C\

{
4
3
, 4
3
ζ, 4

3
ζ2
}
is not faithful.
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Moreover IMG(H, t) looks like the Hanoi Towers group H (see Section 1.1). Indeed consider
two tree automorphisms g, h in Aut(T3) whose wreath recursions are given by

g = (1, 2)〈〈h, h, h〉〉 and h = 〈〈g, g, g〉〉

This pair of tree automorphisms is well defined by induction on the successive levels of the regular
rooted tree T3. Now consider the following wreath recursions

a′ = g.a.g−1 =

0
h // 0

a // 0
h−1 // 0

1 h

''OOOOOOOOO 1

''OOOOOOOOO 1 h−1

''OOOOOOOOO 1

2 h

77ooooooooo
2

77ooooooooo
2 h−1

77ooooooooo
2

=
0
h.a.h−1// 0

1

''OOOOOOOOO 1

2

77ooooooooo
2

= (1, 2)〈〈h.a.h−1, Id, Id 〉〉

b′ = g.c.g−1 =

0
h // 0

,,

0
h−1 // 0

1 h

''OOOOOOOOO 1
b // 1 h−1

''OOOOOOOOO 1

2 h

77ooooooooo
2

22

2 h−1

77ooooooooo
2

=

0

''OOOOOOOOO 0

1

77ooooooooo
1

2
h.b.h−1 // 2

= (0, 1)〈〈 Id, Id, h.b.h−1〉〉

c′ = g.b.g−1 =

0
h // 0

''OOOOOOOOO 0
h−1 // 0

1 h

''OOOOOOOOO 1

77ooooooooo
1 h−1

''OOOOOOOOO 1

2 h

77ooooooooo
2

c // 2 h−1

77ooooooooo
2

=

0

,,

0

1
h.c.h−1 // 1

2

22

2

= (0, 2)〈〈 Id, h.c.h−1, Id 〉〉

with

h.a.h−1 =
0

g // 0
a // 0

g−1 // 0

1
g // 1

''OOOOOOOOO 1
g−1 // 1

2
g // 2

77ooooooooo
2

g−1 // 2

=
0
g.a.g−1 // 0

1

''OOOOOOOOO 1

2

77ooooooooo
2

= (1, 2)〈〈a′, Id, Id 〉〉

h.b.h−1 =
0

g // 0

''OOOOOOOOO 0
g−1 // 0

1
g // 1

77ooooooooo
1

g−1 // 1

2
g // 2

c // 2
g−1 // 2

=

0

''OOOOOOOOO 0

1

77ooooooooo
1

2
g.c.g−1 // 2

= (0, 1)〈〈 Id, Id, b′〉〉

h.c.h−1 =
0

g // 0

,,

0
g−1 // 0

1
g // 1

b // 1
g−1 // 1

2
g // 2

22

2
g−1 // 2

=

0

,,

0

1
g.b.g−1 // 1

2

22

2

= (0, 2)〈〈 Id, c′, Id 〉〉

Therefore a quick induction gives 
a′ = (1, 2)〈〈a′, Id, Id 〉〉
b′ = (0, 1)〈〈 Id, Id, b′〉〉
c′ = (0, 2)〈〈 Id, c′, Id 〉〉

These wreath recursions are the three generators of the Hanoi Towers group H (see Section
1.1), and thus g.〈a, b, c〉.g−1 = H. Consequently the iterated monodromy group IMG(H, t) seen as
a subgroup of Aut(T3) is conjugate to the Hanoi Towers group H by a tree automorphism of T3.

But one can show that g does not correspond to a map of the form ϕ(L),(L′) = ϕ(L) ◦
(
ϕ(L′)

)−1
for some pair of labeling choices (L) and (L′), or equivalently there is no labeling choice for which
IMG(H, t) and H are equal as subgroup of Aut(T3).

However similar computations show that IMG(H, t) = H where H : z 7→ H(z) = z2 − 16
27z

.

28



4 Some properties in holomorphic dynamics

4.1 Combinatorial invariance

Let f and g be two post-critically finite branched coverings on the topological sphere S2 and denote
by Pf and Pg their respective post-critical sets. Recall that f and g are said to be combinatorially
equivalent (or Thurston equivalent) if there exist two orientation-preserving homeomorphisms ψ0, ψ1

on S2 such that

(i) ψ0 ◦ f = g ◦ ψ1

(ii) ψ0(Pf ) = ψ1(Pf ) = Pg and ψ0|Pf
= ψ1|Pf

(iii) ψ0 is isotopic to ψ1 relatively to Pf

Let t ∈ S2\Pf be a base point. Remark that the push-forward map (ψ0)? : [γ] 7→ [ψ0 ◦ γ]
realizes a group isomorphism from π1(S2\Pf , t) onto π1(S2\Pg, ψ0(t)) since ψ0(Pf ) = Pg. Applying
the fundamental homomorphism theorem, one gets a group isomorphism, say (ψ0)? again, from
IMG(f, t) onto a quotient group of π1(S2\Pg, ψ0(t)).
Proposition 4

If f and g are two combinatorially equivalent post-critically finite branched coverings on the
topological sphere S2, say ψ0 ◦ f = g ◦ ψ1, then for any base point t ∈ S2\Pf

(ψ0)?

(
IMG(f, t)

)
= IMG(g, ψ0(t))

More precisely, for every loop γ in S2\Pf with base point t, the monodromy action induced by
[ψ0 ◦ γ] on the tree of preimages T (g, ψ0(t)) is the same as that one induced by [γ] on the tree
of preimages T (f, t) (up to conjugation by tree isomorphism).

Equivalently speaking, the iterated monodromy group is an invariant with respect to combinatorial
equivalence classes. But it is not a complete invariant (some additional algebraic data are required,
see [Nek05]).
Proof : At first, remark that h = ψ−11 ◦ψ0 is an orientation-preserving homeomorphism isotopic to IdS2

relatively to Pf such that f ◦h = ψ−10 ◦ g ◦ψ0. It follows that (ψ0)?(IMG(f ◦h, t)) = IMG(g, ψ0(t))
(by definition of the push-forward isomorphism (ψ0)?). Therefore one only needs to check that
IMG(f, t) = IMG(f ◦ h, t), or equivalently from Definition 10, the kernel of the monodromy action
of f ◦ h is the same as that one of f (as subgroups of π1(S2\Pf , t)).

So let γ be a loop in S2\Pf with base point t such that [γ] is in the kernel of the monodromy
action of f , namely for every preimage y ∈

⊔
n>0 f

−n(t) the fn-lift of γ from y is again a loop.

Let x1 be a preimage in (f ◦ h)−1(t). Since [γ] is in the kernel of the monodromy action of f ,
the f -lift Γh(x1) of γ from h(x1) ∈ f−1(t) is a loop. It easily follows that h−1 ◦ Γh(x1), which is the
(f ◦ h)-lift of γ from x1, is a loop as well. Furthermore remark that h−1 ◦ Γh(x1) is homotopic to
Γh(x1) in S2\Pf (since h is isotopic to IdS2 relatively to Pf ).

Now assume by induction that every (f ◦ h)n-lift of γ is a loop homotopic to some fn-lift
of γ. Let xn+1 be a preimage in (f ◦ h)−(n+1)(t). From assumption, the (f ◦ h)n-lift of γ from
xn = (f ◦ h)(xn+1), say Γ̃xn , is a loop homotopic to some fn-lift of γ, say Γyn where yn ∈ f−n(t).
Using the homotopy lifting property from Proposition 1, it follows that the f -lift Γ̃h(xn+1) of Γ̃xn
from h(xn+1) ∈ f−1(xn) is homotopic to some f -lift of Γyn , say Γyn+1 where yn+1 ∈ f−(n+1)(t).
Since [γ] is in the kernel of the monodromy action of f , Γyn+1 is a loop (as fn+1-lift of γ) and thus
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Γ̃h(xn+1) also. It easily follows that h−1 ◦ Γ̃h(xn+1), which is the (f ◦ h)(n+1)-lift of γ from xn+1, is a
loop as well. Furthermore h−1 ◦ Γ̃h(xn+1) is homotopic to Γ̃h(xn+1) and therefore to Γyn+1 .

The following graph depicts this argument in short.
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It follows by induction that [γ] is in the kernel of the monodromy action of f ◦ h. Consequently

(ψ0)?(IMG(f, t)) ⊃ (ψ0)?(IMG(f ◦ h, t)) = IMG(g, ψ0(t))

The reciprocal inclusion follows by symmetry since (ψ0)? = (ψ1)
−1
? .

Example - Classification of quadratic branched coverings with three post-critical points :
Although the iterated monodromy group is not a complete invariant, it may be used to characterize
some combinatorial equivalence classes. For instance, consider degree 2 branched coverings on the
topological sphere S2 whose post-critical sets contain exactly three points. Such branched covering has
exactly two simple critical points. By a quick exhaustion, there are exactly four ramification portraits
with two simple critical points and three post-critical points, which are as follows

? 2:1
yy

?

2:1

?? ?

1:1
��

? 2:1
yy

2:1 // ?
1:1 // ? 1:1

zz

2:1 // ?
1:1 // ?

2:1

?? ?

1:1
��

?

2:1

?? ?

2:1

?? ?

1:1

xx

According to Thurston topological characterization of post-critically finite rational maps [DH93], any
combinatorial equivalence class of quadratic branched coverings with exactly three post-critical points
contains a unique rational map up to conjugation by a Möbius map. Some easy computations show
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that each of the ramification portraits above corresponds to exactly one quadratic rational map up to
conjugation by a Möbius map. These rational models are

Q−1 : z 7→ z2 − 1 , C2 : z 7→ 2z2 − 1 , R : z 7→
(
z − 1

z + 1

)2

and F : z 7→ 1− 1

z2

The first three of them have already studied in Section 3.3. The rational map F (and R too) was
studied in [BN06] where the authors proved that the corresponding iterated monodromy group (seen
as a subgroup of Aut(T2), for some base point t ∈ C\{0, 1} and some labeling choice) is generated by
the following wreath recursions

IMG(F, t) =
〈
a = (0, 1)〈〈 Id, a−1.b−1〉〉, b = 〈〈a, Id 〉〉

〉
It follows that each row of the following table corresponds to exactly one combinatorial equivalence
class.
ramification portrait rational model generators of IMG Julia set

? 2:1
yy

?

2:1

?? ?

1:1
��

Q−1 : z 7→ z2 − 1
a = (0, 1)〈〈b, Id 〉〉
b = 〈〈a, Id 〉〉

? 2:1
yy

2:1 // ?
1:1 // ? 1:1

zz

C2 : z 7→ 2z2 − 1
(or Q−2 : z 7→ z2 − 2)

a = (0, 1)〈〈 Id, Id 〉〉
b = 〈〈b, a〉〉

2:1 // ?
1:1 // ?

2:1

?? ?

1:1
��

R : z 7→
(
z − 1

z + 1

)2
a = (0, 1)〈〈 Id, Id 〉〉
b = (0, 1)〈〈a, b−1〉〉

?

2:1

?? ?

2:1

?? ?

1:1

xx
F : z 7→ 1− 1

z2
a = (0, 1)〈〈 Id, a−1.b−1〉〉
b = 〈〈a, Id 〉〉

Since these iterated monodromy groups are pairwise not isomorphic (for instance, see [BGK+08]), they
entirely characterize the four combinatorial equivalence classes of quadratic branched coverings with
exactly three post-critical points.

Example - Hubbard Twisted Rabbit Problem (due to Bartholdi and Nekrashevych [BN06]) :

In the previous example, iterated monodromy groups are redundant since the four combinatorial equiv-
alence classes are actually characterized by their ramification portraits. However there exist combi-
natorial equivalence classes with same ramification portrait which are distinguished by their iterated
monodromy groups. The first example is due to Pilgrim [Pil00]. Another example is provided by the
solution of the Hubbard Twisted Rabbit Problem given by Bartholdi and Nekrashevych [BN06] and for
which Proposition 4 is essential.
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Namely consider a quadratic polynomial Qc : z 7→ z2 +c where c ∈ C is chosen in order that the critical
point 0 is on a periodic orbit of period 3. There are precisely three such parameters c which are denoted
by cairplane ≈ −1.755, crabbit ≈ −0.123 + 0.745i and ccorabbit ≈ −0.123− 0.745i.

∞ 2:1
xx

0

2:1

?? c

1:1

88c
2 + c

1:1

ww

airplane rabbit corabbit

Consider now a Dehn twist D around the two nonzero post-critical points of Qcrabbit . Then for every
integer m ∈ Z, the map Dm ◦ Qcrabbit is again a branched covering with the same post-critical set
(and same ramification portrait) as Qcrabbit . According to Thurston topological characterization of
post-critically finite rational maps [DH93], the map Dm ◦Qcrabbit is combinatorially equivalent to one
of Qcairplane

, Qcrabbit , Qccorabbit . The question asked by Hubbard [DH93] is which one ? A sketch of
the solution given by Bartholdi and Nekrashevych is to compute the iterated monodromy group of
Dm ◦Qcrabbit and to compare it with those ones of Qcairplane

, Qcrabbit and Qccorabbit .

Example - Characterization of Thurston obstructions :
Proposition 4 suggests that the topological criterion from Thurston characterization of post-critically
finite rational maps (see [DH93]) may be algebraically reformulated in terms of the associated iterated
monodromy group. Actually it was done in [Pil04] (see also [Pil03a]). To illustrate this, one can easily
show how to check that a certain kind of Thurston obstructions, namely Levy cycles (see [Lev85]), does
not occur by using the wreath recursions of the associated iterated monodromy group.

Let f be a post-critically finite branched covering on the topological sphere S2 of degree d > 2 and
denote by Pf its post-critical set. Recall that a multi-curve is a finite set Γ = {γ1, γ2, . . . , γm} of m > 1
disjoint Jordan curves in S2\Pf which are non-isotopic and non-peripheral (namely each connected
component of S2\γk contains at least two points of Pf for every k ∈ {1, 2, . . . ,m}). Also recall that
a multi-curve Γ = {γ1, γ2, . . . , γm} is called a Levy cycle if for every k ∈ {1, 2, . . . ,m}, f−1(γk) has a
connected component δk−1 isotopic to γk−1 relatively to Pf (with notation γ0 = γm) and the restriction
f |δk−1

: δk−1 → γk is of degree one.

Up to isotopy, all the loops in a multi-curve Γ = {γ1, γ2, . . . , γm} may be assumed to have a common
base point t ∈ S2\Pf . Using the monodromy action, every loop in Γ induces a tree automorphism of
Td (for any given labeling choice) which may be uniquely written as wreath recursion as follows (see
Definition 4) 

γ1 = σγ1〈〈γ1,0, γ1,1, . . . , γ1,d−1〉〉
γ2 = σγ2〈〈γ2,0, γ2,1, . . . , γ2,d−1〉〉

. . .
γm = σγm〈〈γm,0, γm,1, . . . , γm,d−1〉〉

It follows from Lemma 3 that if the multi-curve Γ = {γ1, γ2, . . . , γm} is a Levy cycle then for every
k ∈ {1, 2, . . . ,m}, there exists a letter εk ∈ E = {0, 1, . . . , d− 1} such that σγk(εk) = εk and γk,εk , γk−1
(with notation γ0 = γm) are two tree automorphisms of Td induced by two loops which are isotopic
relatively to Pf . Although this algebraic necessary condition is not a sufficient condition since the
monodromy action is in general not faithful (two non-homotopic loops may induce the same tree
automorphism in Aut(Td)), it may be used in order to prove that a combinatorial equivalence class
does not contain some Levy cycles (according to Proposition 4).

32



4.2 Matings

Let f1 and f2 be two monic polynomials on the complex plane C of same degree d > 2. Let C1 and
C2 be two copies of the complex plane and let f1 and f2 act on the corresponding copy. Compactify
each copy by adding circles at infinity, that is

C̃1 = C1 ∪ {∞ · e2iπθ / θ ∈ R/Z} and C̃2 = C2 ∪ {∞ · e2iπθ / θ ∈ R/Z}

The actions of f1 and f2 are continuously extended to the action∞· e2iπθ 7→ ∞· e2iπdθ on the circle
at infinity. Now glue the copies C̃1 and C̃2 along the circle at infinity in the opposite direction,
namely

C1 |= C2 = C̃1 t C̃2/(∞ · e2iπθ ∈ C̃1) ∼ (∞ · e−2iπθ ∈ C̃2)

This makes C1 |= C2 a topological sphere and that provides a degree d branched covering f1 |= f2
on C1 |= C2 whose restrictions on the hemispheres C1 and C2 are equal to f1 and f2 respectively.
f1 |= f2 is called the formal mating of f1 and f2. Furthermore, f1 and f2 are said to be matable if
the formal mating f1 |= f2 is combinatorially equivalent to a rational map (see [Tan92]).

If f1 and f2 are post-critically finite, then f1 |= f2 is post-critically finite as well. In that case
one can consider the iterated monodromy group of partial self-covering induced by f1 |= f2 (or that
one induced by the corresponding rational map in case f1 and f2 are matable) and compare it
with those ones induced by f1 and f2 respectively. The following result is an easy consequence of
Definition 10 and construction of the formal mating.
Proposition 5

The iterated monodromy group of a formal mating f1 |= f2 is generated by two subgroups which
are isomorphic to the iterated monodromy groups of f1 and f2 respectively.

Remark this provides a sufficient condition to prove that a rational map is not combinatorially
equivalent to a formal mating (according to Proposition 4). Unfortunately this criterion (the
iterated monodromy group of a given post-critically finite rational map of degree d > 2 is not
generated by some pair of iterated monodromy groups of degree d monic polynomials) is too hard
to check.

The following result is more useful with this aim in view.
Proposition 6

The iterated monodromy group of a formal mating f1 |= f2 of degree d > 2 contains a tree
automorphism which acts as a cyclic permutation of order dn on the n-th level for every n > 1.

In order to prove that a rational map f is not combinatorially equivalent to a formal mating,
that provides finitely many conditions to check for every level n > 1. Indeed one only need to
show that the finite subgroup of permutations generated by the monodromy actions on the n-th
level induced by the finitely many generators of π1(Ĉ\Pf , t) (for any base point t ∈ Ĉ\Pf ) does not
contain a cyclic permutation. Unfortunately this criterion is not an equivalence as it will be shown
in the next example.
Proof : Without loss of generality, choose the base point t to be the fixed point ∞.e2iπ0 on the circle

at infinity of the copies C̃1 and C̃2. Consider the loop γ which describes the circle at infinity (in one
turn from t to t). Remark that the (f1 |= f2)-lifts of γ are the arcs of circle at infinity between two
consecutive preimages of t. For ε describing the alphabet E = {0, 1, . . . , d− 1}, denote successively
by xε these consecutive preimages and by `ε the arcs of circle at infinity between t and xε (going
along the circle at infinity in the same direction as γ). By using Lemma 3, one can deduce the
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monodromy action of [γ]

∀w ∈ E?,


[γ]0w = 1w
[γ]1w = 2w
. . .
[γ](d− 2)w = (d− 1)w
[γ](d− 1)w = 0([γ]w)

Consequently, the iterated monodromy group IMG(f, t) seen as a subgroup of Aut(Td) contains
the wreath recursion γ = σ〈〈 Id, Id, . . . , Id, γ〉〉 where σ = (0, 1, . . . , d − 1) (using circular notation)
which defines the adding machine. In particular, [γ] acts as a cyclic permutation of order dn on the
n-th level for every n > 1.

Example - The non-mating Wittner example (due to Milnor and Tan Lei [Mil92]) :
Consider the following quadratic rational map

W : z 7→ λ

(
z +

1

z

)
+ µ

where the parameters λ, µ ∈ C are chosen in order that the critical point c0 = 1 is on a periodic orbit of
period 4 and the critical point c′0 = −1 is on a periodic orbit of period 3. Such parameters are actually
unique and computation gives λ ≈ −0.138 and µ ≈ −0.303. The following ramification portrait depicts
the pattern of the critical orbits along the real line R.

c3

1:1

;;c′0

2:1

>>
c1

1:1

;;c′1

1:1

<<0 c2

1:1

zz
c0

2:1

xx
c′2

R //

1:1

{{

Wittner proved that W is not combinatorially equivalent to a formal mating (see [Mil92]). Proposition
6 suggests a different proof of this result by using iterated monodromy groups. Unfortunately one will
show that there exists a tree automorphism in the iterated monodromy group of W which acts as a
cyclic permutation on every level although W is not combinatorially equivalent to a formal mating.
However one will see that iterated monodromy groups provide an efficient way to prove that W 5 is
combinatorially equivalent to a formal mating.

For convenience, conjugate W by the Möbius map z 7→ z+i
iz+1 which interchanges the extended real line

R ∪ {∞} and the unit circle S1 (keeping the critical points 1 and −1 fixed). Abusing notation, the
resulting map is still denoted by W and the post-critical points, which belong to the unit circle S1, are
still denoted by ck = W k(1) and c′k = W k(−1) for every integer k. Choose the fixed point t = −i as
base point (which corresponds to ∞ in the first model).

The fundamental group π1(Ĉ\PW , t) may be described as the free group generated by six homotopy
classes among [a0], [a1], [a2], [a3] and [b0], [b1], [b2] where every loop ak (respectively bk) surrounds the
post-critical point ck (respectively c′k) in a counterclockwise motion (see Figure 10). In fact, these seven
loops together are linked by a circular relation of the form [b2.a0.a2.b1.a1.b0.a3] = [1t] where [1t] is the
homotopy class of the constant loop at base point t (that is the identity element of the fundamental
group π1(Ĉ\PW , t)).
Let x0 = −i, x1 = i be the preimages of t = −i. Choose `0 to be the constant path at base point t = x0
and `1 to be the straight path from t to x1. Figure 11 depicts the W -lift of Figure 10.
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Figure 10: Seven generators of π1(Ĉ\PW , t)

Figure 11: The W -lift of Figure 10

It follows from Lemma 3 that the iterated monodromy group IMG(W, t) seen as a subgroup of Aut(T2)
is generated by the following wreath recursions

a0 = 〈〈a3, Id 〉〉 a1 = (0, 1)〈〈b2.a0, b−12 〉〉 a2 = 〈〈 Id, a1〉〉 a3 = 〈〈 Id, a2〉〉

0
a3 // 0

1 // 1

0 b2.a0

))RRRRRRRRRRR 0

1 b−12

55lllllllllll
1

0 // 0

1
a1 // 1

0 // 0

1
a2 // 1

b0 = 〈〈b2, Id 〉〉 b1 = (0, 1)〈〈a−13 , b0.a3〉〉 b2 = 〈〈 Id, b1〉〉

0
b2 // 0

1 // 1

0 a−13

))RRRRRRRRRRR 0

1 b0.a3

55lllllllllll
1

0 // 0

1
b1 // 1
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Recall that every homotopy class in π1(Ĉ\PW , t) may be uniquely written as [γν11 .γ
ν2
2 . . . . .γ

νm
m ] where

the loops γj are chosen among a0, a1, a2, b0, b1, b2 (disregarding a3) and the exponents νj belong to Z.
Notice that for every k ∈ {0, 1, 2}, the following maps

αk : [γν11 .γ
ν2
2 . . . . .γ

νm
m ] 7−→

∑
γj=ak

νj and βk : [γν11 .γ
ν2
2 . . . . .γ

νm
m ] 7−→

∑
γj=bk

νj

are well defined on π1(Ĉ\PW , t) (the cartesian product of maps α0×α1×α2× β0× β1× β2 is actually
a projection onto the abelianization of π1(Ĉ\PW , t), namely Z6).

Claim: Let [γ] ∈ π1(Ĉ\PW , t) be a homotopy class such that αk([γ]) = 0 and βk([γ]) = 1 for every
k ∈ {0, 1, 2}. Then the tree automorphism induced by the monodromy action of [γ] acts as a
cyclic permutation of order 2n on the n-th level for every n > 1.

For instance, the wreath recursion b2.b1.b0 = (0, 1)〈〈a−13 , b1.b0.a3.b2〉〉 satisfies the conclusion of Propo-
sition 6 although W is not combinatorially equivalent to a formal mating.

Proof of the Claim : At first, remark that the result holds on the first level for every tree automor-
phism γ ∈ Aut(T2) coming from a homotopy class [γ] = [γν11 .γ

ν2
2 . . . . .γ

νm
m ] which satisfies the assump-

tions. Indeed, since Sym(E) = {Id, (0, 1)} is an abelian group, the root permutation γ|E1 ∈ Sym(E)
gives

γ|E1 = γαm
m |E1 ◦ · · · ◦ γ

α2
2 |E1 ◦ γ

α1
1 |E1 = b0|E1 ◦ b1|E1 ◦ b2|E1 = Id ◦(0, 1) ◦ Id = (0, 1)

Let n > 2 be an integer and assume by induction that the result holds on the (n− 1)-th level for every
tree automorphism coming from a homotopy class which satisfies the assumptions. Let γ ∈ Aut(T2)
be a tree automorphism coming from a homotopy class [γ] which satisfies the assumptions. Denote by
γ0 and γ1 the renormalizations of γ at 0 and 1 induced by some homotopy classes [γ0] and [γ1] (see
Lemma 3), in order that the wreath recursion of γ is given by γ = (0, 1)〈〈γ0, γ1〉〉. Lemma 1 gives

γ2 =
0 γ0

))RRRRRRRRRRR 0 γ0

))RRRRRRRRRRR 0

1 γ1

55lllllllllll
1 γ1

55lllllllllll
1

=
0

γ0.γ1 // 0

1
γ1.γ0 // 1

= 〈〈γ0.γ1, γ1.γ0〉〉

Furthermore, it follows from the wreath recursions of the generators a0, a1, a2, b0, b1, b2 and from the
relation a−13 = b2.a0.a2.b1.a1.b0 that

α0([γ0]) + α0([γ1]) = −α0([γ]) + α1([γ]) + β1([γ])− β1([γ]) = 0
α1([γ0]) + α1([γ1]) = −α0([γ]) + α2([γ]) + β1([γ])− β1([γ]) = 0
α2([γ0]) + α2([γ1]) = −α0([γ]) + β1([γ])− β1([γ]) = 0
β0([γ0]) + β0([γ1]) = −α0([γ]) + β1([γ])− β1([γ]) + β1([γ]) = 1
β1([γ0]) + β1([γ1]) = −α0([γ]) + β1([γ])− β1([γ]) + β2([γ]) = 1
β2([γ0]) + β2([γ1]) = −α0([γ]) + α1([γ]) + β0([γ]) + β1([γ])− β1([γ]) = 1

Hence

∀k ∈ {0, 1, 2},
{
αk([γ0.γ1]) = αk([γ1.γ0]) = αk([γ0]) + αk([γ1]) = 0
βk([γ0.γ1]) = βk([γ1.γ0]) = βk([γ0]) + βk([γ1]) = 1

Therefore the renormalizations γ0.γ1 and γ1.γ0 of γ2 satisfy the assumptions, and thus (from the
inductive hypothesis) they act as cyclic permutations of order 2n−1 on the (n−1)-th level. Consequently
γ acts as a cyclic permutation of order 2n on the n-th level and the result follows by induction.

However the iterated monodromy group of W may be used to prove that W 5 is combinatorially
equivalent to a formal mating. The key is that wreath recursions provide an efficient way to com-
pute the W 5-lifts of any loop (up to isotopy of loops). For instance, consider the wreath recursion
b2.b1.b0 = (0, 1)〈〈a−13 , b1.b0.a3.b2〉〉 induced by the loop b2.b1.b0. From Lemma 3, this loop has only one
W -lift which is isotopic to a−13 .b1.b0.a3.b2 relatively to PW . This W -lift induces the following wreath
recursion (according to Lemma 1)
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a−13 .b1.b0.a3.b2 =
0 // 0 a−13

))RRRRRRRRRRR 0
b2 // 0 // 0 // 0

1
a−12 // 1 b0.a3

55lllllllllll
1 // 1

a2 // 1
b1 // 1

=
0 a−13 .a2.b1

..\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 0

1 a−12 .b0.a3.b2

00bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb 1

= (0, 1)〈〈a−13 .a2.b1, a
−1
2 .b0.a3.b2〉〉

Therefore it follows from Lemma 3 that the loop a−13 .b1.b0.a3.b2 has only one W -lift which is isotopic
to a−13 .a2.b1.a

−1
2 .b0.a3.b2 relatively to PW . Equivalently the loop b2.b1.b0 has only one W 2-lift which

is isotopic to a−13 .a2.b1.a
−1
2 .b0.a3.b2 relatively to PW . Repeating this process gives after computations

(using the circular relation b2.a0.a2.b1.a1.b0.a3 = Id)

a−13 .a2.b1.a
−1
2 .b0.a3.b2 = (0, 1)〈〈a−13 .a−11 .a2.b1, a

−1
2 .a1.b0.a3.b2〉〉

a−13 .a−11 .a2.b1.a
−1
2 .a1.b0.a3.b2 = (0, 1)〈〈b2.a1.b0.a3.b2.a0.a2.b1, a−12 .a−10 .b−12 .a−13 .a−11 .b−12 .b2〉〉

= (0, 1)〈〈b2, a−12 .a−10 .b−12 .a−13 .a−11 〉〉
b2.a

−1
2 .a−10 .b−12 .a−13 .a−11 = (0, 1)〈〈a−13 .b2, b1.a

−1
1 .b−11 .a−12 .a−10 .b−12 〉〉

= (0, 1)〈〈a−13 .b2, b1.b0.a3〉〉

Finally the loop b2.b1.b0 has only one W 5-lift which is isotopic to a−13 .b2.b1.b0.a3 relatively to PW (see
Figure 12). Remark that these two loops are actually orientation-preserving isotopic to a same Jordan
curve relatively to PW = PW 5 . It is known (see for instance [Mey12]) that the existence of such a
Jordan curve, called an equator, is a sufficient condition to prove that W 5 is combinatorially equivalent
to a formal mating.

Figure 12: The loop b2.b1.b0 and its W 5-lift
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